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Abstract

I use Danish administrative data 1980-2013 to study the underlying mechanisms generating fluc-

tuations in income-shock moments. I partition the population into 37 narrowly defined educational

categories and document the cyclicality of labor-income shock moments for each category separately. For

the individual educational categories, mean income growth is strongly correlated with income-growth

skewness, with an average correlation of 0.87 − 0.88. The connection between income-growth skewness

and mean income growth is not only strong in the time dimension, but also in the cross section. Across

the 37 educational categories, the correlation between mean income growth and income growth skewness

is 0.93 − 0.96. Labor-market frictions together with variations in productivity growth can generate the

relationship between mean income growth and income growth skewness. In a quantitative job-ladder

model, variations in productivity growth quantitatively capture both the time-series and cross-sectional

relationship.
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1 Introduction

Cyclical movements in income risk are commonly argued to be an important contributor to the cyclicality

of asset prices (Constantinides and Duffie (1996), Storesletten et al. (2007), Schmidt (2016)), the welfare

costs of business cycles (Storesletten et al. (2001), Krebs (2003, 2007), De Santis (2007)) and the cyclicality

of consumption expenditures (Challe et al. (2017), McKay (2017), Ravn and Sterk (2017)). In this paper, I

explore the underlying labor-market processes generating the cyclicality of measured income risk.

First, I use Danish administrative data 1980-2013 to document the cyclical variations in income risk.

In a recent paper, Guvenen et al. (2014) showed that US recessions are associated with more individuals

experiencing large decreases in labor income and fewer individuals experiencing large increases in labor

income, while the number of individuals experiencing small changes to their labor income is comparatively

stable. In statistical terms, this pattern can be summarized by saying that the skewness of the labor income

growth distribution is cyclical while the dispersion is acyclical. In the Danish administrative data, mean labor

income growth is strongly correlated with labor income growth skewness, with a correlation of 0.88−0.90 for

one-year income growth, three-year income growth, and five-year income growth. In contrast, the dispersion

of the income growth distribution is basically uncorrelated with mean income growth. This reaffirms the

findings of Guvenen et al. (2014) in a Danish context.

The macro-level relationship could potentially be a composition effect, with no corresponding relationship

for the different labor markets comprising the economy. To explore cyclical income risk for different labor

markets, I partition the population into 37 narrowly defined educational categories and show that almost all

categories exhibit a high correlation of mean income growth and income growth skewness. 1 Mean income

growth at the educational-category level is strongly correlated with income growth skewness, with an average

correlation of 0.87− 0.88 for the different horizons. As for the full population distribution, the dispersion of

the income growth distribution is uncorrelated with mean income growth.

Furthermore, the connection between income growth skewness and mean income growth is not only strong

in the time dimension, but also in the cross section. Educational categories with high mean income growth

1980-2013 are the educational categories with most positive skewness of their income growth distribution.

Across the 37 educational categories, the correlation between mean income growth and income growth

skewness is 0.93 − 0.96.

The empirical findings are summarized in Figure 1.1. In the figure, the blue circles show the year-specific

mean income growth and income growth skewness for the full population 1980-2013. The orange squares

show the educational-category specific mean income growth and income growth skewness (pooling all years).

1Educational categories overlap with both industry and occupation categories (for example, a medical doctor generally
works with medicine in the health-care sector), but have the advantage that an individual’s education is largely pre-determined
when he or she enters the labor market. In contrast, with industry and occupation partitions, selective industry or occupation
switching introduces bias in the estimates of income risk.

2



Figure 1.1: The mean income growth and the income growth skewness for all years (1980-2013, blue circles)

and for all educational categories (37 educational categories, orange squares).
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As is evident from Figure 1.1, the time-series variation and the cross-sectional variation line up closely. It is

natural to conjecture that the cross-sectional and time-series relationships share a common root.

I provide a mechanism generating the mean-skewness relationship, built on two key assumptions: There

is variation in productivity growth over time and across educational categories and there are labor market

frictions that make wages not respond one-to-one in the short run to productivity growth. If individual

wages are updated only occasionally in an environment with productivity growth, then when they are

updated the wage jumps to catch up with productivity growth. In an environment with higher productivity

growth, the income jumps are comparatively larger, generating both positive mean income growth and more

positive skewness of the income growth distribution. In a theoretical reduced-form setting, I show that

such a framework gives first-order movements in skewness but only second-order movements in dispersion

in response to variations in the growth rate. To evaluate the mechanism quantitatively, I introduce growth

into a job-ladder model. The parameter values are taken directly from Bagger et al. (2014), who estimate

a quantitative job-ladder model with sequential auctioning on Danish matched employer-employee data.

Through the lens of the job-ladder model, variations in the job-finding rate, the job-separation and the

offer-arrival rate for employed workers cannot generate the variation in mean income growth and income

growth skewness that we documented. However, in the model framework, productivity growth quantitatively

generates the relationship of mean income growth and income growth skewness at the three-year and five-year

horizons, both in the cross section and in the time-series dimension. In the cross section, modelling different

educational categories as identical except for their steady state productivity growth rates, productivity

growth differences quantitatively account for the cross-sectional relationship of mean income growth and

income growth skewness. In the time-series dimension, shocks to the productivity growth of an educational
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category generate a high correlation between mean income growth and income growth skewness, as well as

quantitatively close relative magnitudes of the variations in the mean income growth and income growth

skewness.

In the quantitative job-ladder model, wages are determined by piece-rate contracts. Therefore, for wages

not to respond one-to-one with productivity growth we assume that growth is only reflected in the produc-

tivity of potential future matches, not the productivity of ongoing matches. In other words, productivity

is embodied for the particular match. The productivity growth mechanism is consistent with other well-

established facts. Viewing the growth of the offer-productivity distribution as an important source of the

labor-market business cycle implies that the job-to-job transition rate is strongly pro-cyclical. The pro-

cyclicality of the job-to-job transition rate is well documented and a recent series of papers have particularly

emphasized the connection between the job-to-job transition rate and the mean labor income growth.2 In

contrast, job-separation rate shocks generate a counterfactual negative comovement of mean income growth

and the job-to-job transition rate.

1.1 Related Literature

The effects of fluctuations in income risk on welfare, consumption and savings have been studied extensively

in the literature. Storesletten et al. (2001), Krebs (2003, 2007) and De Santis (2007) study the effects of

cyclical income risk on the welfare costs of business cycles. Constantinides and Duffie (1996), Storesletten

et al. (2007) and Schmidt (2016) study the asset pricing implications of cyclical income risk. Challe et al.

(2017), McKay (2017), and Ravn and Sterk (2017) study the effects on consumption dynamics.

On the empirical side, Storesletten et al. (2004) argued using PSID data that US recessions were associated

with higher variance of permanent shocks to household income after taxes and transfers. Our empirical work

directly builds on a recent literature, starting with Guvenen et al. (2014), which argues that the fluctuations

in individual labor income risk are shifts in the skewness of the income growth distribution. Guvenen et al.

(2014) study, using US social security administrative data, the cyclicality of the skewness and dispersion of

the labor income growth distribution and find that the dispersion is essentially acyclical while the skewness is

more negative in recessions. Busch et al. (2016) do a similar analysis for Germany, Sweden and the US using

the PSID and broadly find the same cyclical skewness in all three countries. Blass-Hoffmann and Malacrino

(2016) also aim to understand the underlying labor market mechanisms that generate cyclical skewness of

labor income. They use Italian administrative data and do a decomposition analysis where they decompose

the cyclicality of the skewness into contributions from wages and contributions from employment time. They

find that the cyclicality of skewness is driven by cyclical changes in employment time, which taken at face

value contradicts our result that cyclical skewness is driven by productivity growth shocks. Importantly,

2See Faberman and Justiniano (2015), Moscarini and Postel-Vinay (2016), Moscarini and Postel-Vinay (2017) and Karahan
et al. (2017).
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they restrict their analysis to one-year income growth, which is exactly the horizon at which variations in

productivity growth do not provide a quantitative account for the fluctuations in income growth skewness.

A potential reconciliation of our respective findings is that employment is important for the one-year income

growth skewness, while job-to-job transitions generated by productivity growth are more important for the

longer horizons.

The results of this paper are interpreted with a job-ladder model (Burdett and Mortensen (1998), Bon-

temps et al. (2000), Postel-Vinay and Robin (2002)). The paper shares the ambition to understand the

statistical moments of income dynamics through a job-ladder model with Postel-Vinay and Turon (2010)

and Hubmer (2016). Postel-Vinay and Turon (2010) estimate a standard ARMA process for labor income

on a job-ladder model calibrated to match labor market transitions, and find that the estimated ARMA

parameters are close to directly estimated parameters from the British Household Panel Survey. Hubmer

(2016) studies a job-ladder model with risk aversion, wealth accumulation, and endogenous search effort, and

finds that it generates large negative skewness and high excess kurtosis of the income growth distribution,

as documented by Guvenen et al. (2016) for the US using social security data. This paper contributes to the

project of understanding income moments through job-ladder models by studying the cyclicality of measured

income risk rather than steady state moments, as well as the cross-sectional correlation for income risk and

income growth.

1.2 Outline of the Rest of the Paper

In Section 2, we describe the data and the empirical methodology. In Section 3, we analyze the relationship

between mean income growth and income growth skewness for the full population, for each educational

category separately, and in the cross section. Section 4 describes the model and the model experiments.

Section 5 concludes.

2 Data and Empirical Method

This paper studies the full male Danish population age 25-59 from 1980 to 2013. To be in the sample, the

person has to be registered as living in Denmark by December 31st of the year.

The object of study is the labor income distribution for different educational categories. In this section,

I introduce the measures of income, describe the educational categories, and describe the sample selection.

Income The income data are collected from the Danish tax authorities. The labor income measure in-

cludes pre-tax salaried income (including benefits and the value of stock options) and net profit from self-

employment (excluding capital income and expenses), but excludes employer contributions to retirement

funds. All earnings are normalized by consumer price index with 2015 as base year.
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Table 2.1: Number of observations (1980-2013) under the sample selection criteria.

Sample restrictions Year-person observations

Danish male 25-59 43,555,230
+ Income > 12 000 DKK 38,180,100
+ Educ. Req. 30,357,199

Education The education data are from the Danish student registry and the Danish qualifications registry.

For each individual, his highest degree as of October 1st is reported. The degrees are reported very narrowly

and some of the reported degrees are difficult to interpret.3 To facilitate interpretation and quantitative

analysis, I aggregate the degrees by the International Standard Classification of Education (ISCED 2013)

into coarser yet fine categories based on detailed field and level of degree.

The educational level of some degrees, for example nursing, have changed over the sample period. When

aggregating into ISCED 2013 categories I use the current classification of degrees to aggregate.

Up until 2006, migrants to Denmark were surveyed about their schooling and their response is used in

conjunction with information from the Danish government. Since 2006, migrants have not been asked about

their schooling and therefore recent migrants will not be in the sample when conditioning on education.

Income Growth The analysis is concerned with the growth of income over one, three and five years.

k-year income growth in year t is computed as ∆k log yt = log yt+k − log yt. For example, the three-year

income growth of 2008 refers to the growth between the years 2008 and 2011.

Sample Restrictions In order to focus on a population where almost everyone is either looking for

employment or employed, I restrict attention to prime-age men, aged 25-59. When studying k-year income

growth at time t , the individual has to be in the age span both in t and t + k (so the oldest person in the

sample when studying five-year income growth is 55).

Observations with income less than 12,000 DKK (2015 prices, approximately 1,900 US dollars) are

dropped. When conditioning on education, I restrict attention to educational categories which have had

at least 2500 individuals in the sample for all years between 1980 and 2013. This leaves us with 37 educa-

tional groups which span approximately 80 percent of working-age men.

Table 2.1 summarizes the sample selection. A list of the 37 educational categories is shown in Table A.1

in Appendix A.

Empirical Method For each year and each individual, I compute the log income growth at the one-year,

three-year, and five-year horizons. Compiling the list of all the (log) income growth rates at a given horizon

3For example, 2490 corresponds to ”agrarian economist” and 2491 to ”green diploma module 4”.
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for a given year gives a distribution of income growth, for example the distribution of three-year income

growth from 1987 to 1990. I then study how the dispersion and skewness of the income growth distribution

vary over time and its comovement with the mean income growth.

As measures of the dispersion of the income growth distribution, I employ the difference between the

90th percentile and the 10th percentile of the distribution, P90−P10 dispersion, and the standard deviation

of the distribution.

The skewness measures aim to capture the degree to which the distribution is asymmetric. In studying

theoretical distributions, the standard measure of skewness is the normalized third moment of the distribu-

tion, defined by the following expression for a random variable X:

m3 = E

[(
X− µ

σ

)3
]

where µ = E[X] is the expected value of X and σ =
√
E[(X− µ)2] is the standard deviation of X.

However, the normalized third moment gives a lot of weight to outliers. The baseline measure of this

paper, Kelley’s skewness, is defined as

K =
(P90 − P50) − (P50 − P10)

P90 − P10
,

where P90, P50, and P10 are the 90th percentile, the median and the 10th percentile of the distribution.

Kelley’s skewness is a more robust measure than statistical skewness, since it is insensitive to the outliers

outside of the P10 − P90 range. Another advantage is that Kelley’s skewness has a clear interpretation. It

measures how much of the total dispersion, P90 − P10, stems from the right tail, P90 − P50, compared to

the left tail, P50 − P10. If Kelley’s skewness is 1, then all of the P90 − P10 dispersion is located in the right

tail, while if it is −1 then the P90 − P10 dispersion resides in the left tail.

As the measure of the business cycle, I use the mean labor income growth rather than e.g., GDP per

capita growth. Mean labor income growth is a more direct measure of the business cycle relevant for the

labor market than GDP per capita growth. Also, using mean labor income growth as our business cycle

measure helps us later when we study the business cycle for the different educational categories since the

mean labor income growth for an educational category is readily observable while the educational-category

specific GDP growth is not.

GDP per capita growth and the mean labor income growth are closely correlated, as shown in Figure 2.1,

with one qualification: The mean labor income growth at the three-year and five-year horizons move with

a lag of one year compared to real GDP per capita growth. The correlation of the two measures is 0.67 at

the one-year horizon, 0.75 at the three-year horizon, and 0.73 at the five-year horizon (with a one-year lag

in mean labor income growth for the longer horizons).
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Figure 2.1: Comovement of mean labor income growth (blue, solid) and real GDP per capita growth (red,

dashed) at the one-year, three-year, and five-year horizons.

1980 1990 2000 2010

0.06

0.04

0.02

0.00

0.02

0.04

0.06
1-year growth

1980 1990 2000 2010

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.125
3-year growth

1980 1990 2000
0.05

0.00

0.05

0.10

0.15

0.20
5-year growth

3 Empirical Results on Income Growth Risk and Mean Income

Growth

3.1 Cyclical Income Growth Risk for the Total Population

In the left of Figure 3.1, I plot the Kelley’s skewness of the income growth distribution together with the

mean of the income growth distribution, at the one-year, three-year and five-year horizons. Appendix A

shows the corresponding graphs for the statistical skewness and standard deviation in Figure A.1.

The relationship between the skewness and mean is close, with a correlation of 0.87−0.89. This contrasts

with the right part of Figure 3.1, where we plot the P90-P10 dispersion of the income growth distribution

together with the mean of the distribution. As is clear from the figure, the P90-P10 dispersion of the income

growth distribution does not comove with the mean income growth. The correlation ranges from −0.25 to

0.21 at the different horizons. At the ten percent level we cannot reject the null hypothesis of no relationship

between the dispersion measures and mean income growth in a regression framework. The regression results

are shown in Appendix A, Table A.2.

Table 3.1, displays the correlations at all horizons for both the robust measures, Kelley’s skewness and

P90-P10 dispersion, as well as the standard measures, statistical skewness and standard deviation. The two

skewness measures are highly correlated with mean labor income growth with a correlation of 0.87 − 0.90.

The two dispersion measures are slightly negatively correlated with the mean growth rate at the one-year

horizon, essentially uncorrelated at the three-year horizon, and slightly positively correlated at the five-year

horizon. In conclusion, the two measures of skewness move closely with the mean labor income growth, while

the two measures of dispersion do not.
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Figure 3.1: Kelley’s skewness of the labor income growth (blue solid, left) comoves with the mean of labor

income growth (red dashed). The P90-P10 dispersion (blue solid, right) does not.
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Table 3.1: Correlation between the mean labor income growth and the skewness, Kelley’s skewness, stan-

dard deviation and P90-P10 dispersion over the period 1980-2013, at the one-year, three-year, and five-year

horizons.

1-year growth 3-year growth 5-year growth

Kelley’s skewness 0.89 0.88 0.90
Skewness 0.88 0.88 0.87
P90-P10 dispersion -0.25 0.02 0.21
Standard deviation -0.26 0.03 0.15

In Section 4, I provide a labor-market mechanism generating this connection between mean income

growth and income growth skewness. Before that, I document the cyclicality of income risk for the different

educational categories.

3.2 Cyclical Income Growth Risk for the Educational Categories

Next we turn our focus to the relationship of income growth skewness and income growth dispersion with

the mean income growth for the different 37 educational categories.

In Table 3.2, the average correlations of skewness, Kelley’s skewness, the standard deviation and the

P90-P10 dispersion with mean labor income growth at the different horizons are shown.

The correlation between the labor income growth skewness and the mean labor income growth is very

high for almost all educational categories, with a few exceptions discussed below. The population-weighted

average correlation is 0.87−0.88 for Kelley’s skewness and 0.76−0.78 for statistical skewness. In Figure 3.2,

we show the evolution of Kelley’s skewness and mean labor income growth for the educational category with

the correlation closest to the mean, Engineering and engineering trade, Motor vehicles, ships and aircrafts

– Vocational upper secondary education (completed, without direct access to tertiary education).

In contrast, the average correlation with mean growth for the standard deviation and the P90-P10

dispersion are close to zero at the educational-category level for all horizons. The mean correlation is

slightly negative, ranging from −0.05 to −0.17, but much weaker than for skewness and Kelley’s skewness.

Although most educational categories have a high correlation between mean labor income growth and

the labor income growth skewness, there are four educational categories with a correlation below 0.6 at some

horizon. At the one-year horizon, two educational categories have a correlation below 0.6, teachers and

police.4 At the three-year and five-year horizons, in addition to the two aforementioned categories, medical

doctors and child-and-youth-care professionals also have a correlation below 0.6.5 We conjecture that wage

4Education, Teacher training without subject specialization (Professional Bachelor’s, First degree, 3-4 years) and Security
services, Protection of persons and property (Professional Bachelor’s, First degree, 3-4 years).

5Health, Medicine (Academic Master’s degree following a Bachelor’s degree) and Welfare, Child care and youth services
(Professional Bachelor’s, First degree, 3-4 years).
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Table 3.2: Summary statistics, for all 37 educational categories, of the correlation of mean income growth

with income growth skewness, Kelley’s skewness, standard deviation and P90-P10. The mean and standard

deviations are computed weighing the educational categories by population size.

Mean correlation Standard deviation Min. correlation Max. correlation

1-year labor income growth K’s skew. 0.87 0.14 0.22 0.97
3-year labor income growth K’s skew. 0.88 0.14 0.18 0.97
5-year labor income growth K’s skew. 0.88 0.15 0.07 0.96
1-year labor income growth skew. 0.78 0.20 -0.08 0.95
3-year labor income growth skew. 0.78 0.24 -0.34 0.93
5-year labor income growth skew. 0.76 0.21 -0.06 0.93
1-year labor income growth P90-P10 -0.17 0.33 -0.47 0.93
3-year labor income growth P90-P10 -0.12 0.36 -0.55 0.89
5-year labor income growth P90-P10 -0.05 0.39 -0.64 0.87
1-year labor income growth s.d. -0.19 0.28 -0.45 0.80
3-year labor income growth s.d. -0.11 0.31 -0.48 0.78
5-year labor income growth s.d. -0.05 0.35 -0.59 0.84

Figure 3.2: Example of an average educational category, ’Engineering and engineering trade, Motor vehi-

cles, ships and aircrafts – Vocational upper secondary education (completed, without direct access to tertiary

education)’. The correlation of three-year labor income growth Kelley’s skewness and three-year mean labor

income growth is 0.88, equal to the (population weighted) average.
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determination for teachers, police, medical doctors and child-and-youth-care professionals is centralized. A

centrally bargained wages can severe the link between skewness and the mean labor income growth in the

following way: If wages increases are negotiated nationally, a centrally bargained wage will increase wages

proportionally across the board, leaving the skewness of the distribution unaffected.

3.3 Income Growth Risk in the Cross Section

Figure 3.3: Scatter plot of income growth Kelley’s skewness and mean income growth in the cross section

(37 educational categories), at the one-year, three-year and five-year horizons.
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Next, we turn to the cross-sectional correlation between the mean labor income growth and the labor

income growth distribution skewness. Ss before, the log labor income growth is computed at the one-year,

three-year, and five-year horizons for each year, but now all the years are pooled together when constructing

the income growth distribution.

Table 3.3 shows the cross-sectional correlations of mean labor income growth with Kelley’s skewness,

skewness, P90-P10 dispersion, and standard deviation at the one-year, three-year, and five-year horizons.

Kelley’s skewness has a correlation of 0.96 − 0.97 for the different horizons, an arguably remarkably high

correlation. Figure 3.3 shows scatter plots of the one-year, three-year and five-year mean income growth with

income growth Kelley’s skewness. Statistical skewness has a relatively high correlation, 0.68, at the short

horizon, but the statistical skewness has a lower correlation at the longer horizons (0.56 for the three-year

horizon and 0.50 for the five-year horizon). The two measures of dispersion, P90-P10 dispersion and the

standard deviation, show a small correlation at the one-year horizon but a correlation at the five-year horizon

(0.50 − 0.59). Figure 3.4 shows a scatter plot of the mean income growth and the income growth P90-P10

dispersion at the one-year, three-year, and five-year horizons.
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Table 3.3: Correlation with mean labor income growth in the cross section for the 37 educational categories.

1-year growth 3-year growth 5-year growth

Kelley’s skewness 0.96 0.97 0.96
Skewness 0.68 0.56 0.50
P90-P10 dispersion 0.21 0.53 0.59
Standard deviation 0.14 0.45 0.50

Figure 3.4: Scatter plot of income growth P90-P10 dispersion and mean income growth in the cross section

(37 educational categories), at the one-year, three-year and five-year horizons.
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3.4 Summary of Empirical Results

The correlation between mean income growth and income growth skewness is very high for both the full

population and the educational categories in the time-series dimension, as well as in the cross section across

educational categories. Measured cyclical income risk, as captured by cyclical skewness of the income growth

distribution, is the time-series aspect of a tight link between mean income growth and income growth skewness

which is also present in the cross section.

In the next section, I describe a mechanism through which productivity growth parsimoniously accounts

for both the cross-sectional link between mean income growth and skewness as well as the time-series link

between the two. I also show that conventional labor market characteristics fail to account for the link

between mean income growth and skewness.

4 Model

In this section, I show that labor-market frictions together with productivity growth account for the rela-

tionship between mean income growth and income growth skewness. In the model framework, variations

in the job-finding rate, the job-separation rate and the on-the-job offer arrival rate cannot account for the

mean-skewness relationship.

The match between the model with productivity growth and data is quantitatively close. In the cross

section, varying productivity growth captures both the level of skewness and the slope of the mean-skewness

relationship. In the time-series dimension, shocks to productivity growth not only generate a high correlation

between the skewness and mean, but also the relative magnitudes of the variations in the two.

4.1 Lessons from a Simple Example

Before introducing the full quantitative model, I first describe the key mechanism. To gain intuition for

how variations in growth together with labor market frictions generate the correlation between mean income

growth and income growth skewness, consider the following simple model:

The economy grows at a steady rate g. At time t, an individual can either be employed or unemployed.

An unemployed individual receives unemployment benefits (1 + g)tb̄. A worker’s wage stays constant until

he receives a new wage offer or he becomes unemployed.

• With probability λu, an unemployed individual receives a wage offer. The wage offer is (1+g)tx̄, where

x̄ is a constant.

• With probability λe, an employed individual receives a wage offer, which is also (1 + g)tx̄.

• With probability δ, the employed individual becomes unemployed.
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Figure 4.1: Intuition for why the job-ladder model generates a positive correlation between mean log income

growth and log income growth skewness. In a high-growth environment, the relative wage of an individual

moves much quicker toward the benefit level, which makes the positive wage-offer shocks larger and the

negative unemployment shocks smaller than in a low-growth regime.

Unemp. shock, low growth
Wage-offer shock, low growth

Wage-offer shock, high growth
Unemp. shock, high growth

b x

The reasoning that follows is illustrated in Figure 4.1. Consider an individual that receives a wage-offer

shock k periods after he last received a wage-offer shock. The wage-offer shock changes his wage from

(1 + g)t−kx̄ to (1 + g)tx̄. That is, his log wage increases by k log(1 + g).

Now, consider an individual who receives a job-separation shock k periods after he last received a wage-

offer shock. The job-separation shock changes his income from (1 + g)t−kx̄ to (1 + g)tb̄. That is, his log

income falls by k log(1 + g) +
(
log b̄− log ū

)
.

If we compare the individual’s income changes in a high-growth regime with the income changes in a

low-growth regime, we see that the positive shocks (the log wage increase of k log(1 + g)) are higher in a

high-growth regime while the absolute value of the negative shocks (the log income fall by
(
log x̄− log b̄

)
−

k log(1 + g)) is lower in the high-growth regime.

This reasoning holds true for all k, as long as log x̄ − log b̄ > k log(1 + g), and the result is that the

skewness of the log income shock distribution will be higher (more positive) in the high growth environment

than in the low growth environment. Crucial for this argument is that the wage of ongoing matches does

not grow at the same rate as productivity growth.

4.2 Generalizing the Simple Example

The mechanism of the simple example is a particular instance of a more general reduced-form class of income

processes which can be described as follows:

• Let an individual’s log income at time t be denoted by yt.
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• With probability p, a new log income is drawn, yt+1 = Y + gt with Y ∼ F.

• With probability 1 − p, the t+ 1 income remains the unchanged, yt+1 = yt.

• The econometrician observes the income with some i.i.d. noise, ỹt = yt + εt.

In this framework, to a first order, the standard deviation does not move with the mean growth rate

while the skewness does. This conclusion holds true both under comparative statics, varying the steady-state

growth rate g, and in a time-series sense, studying a one-time shock to the growth rate g. The slope of the

relationship between the mean and the skewness is the same both in the comparative statics and in response

to a shock. The results are summarized in the following proposition, the proofs are delegated to Appendix

B.

Proposition 4.1. In the above framework,

• The comparative statics varying the steady-state growth rate g give the following relationship between

the mean, standard deviation and skewness of the income growth distribution:

– The mean and skewness of the income growth distribution satisfy the relationship

Skew∆y = Skew∆y|g=0 +
3(1 − p)√

2

σ2Y(
σ2ε + pσ

2
Y

)3/2Mean∆y
to a first order in g.

– There is no first-order effect on the standard deviation of the income growth distribution.

• The immediate response of the mean, standard deviation and skewness of the income growth distribution

to a shock to the growth rate g give the following relationship:

– The mean and skewness of the income growth distribution satisfy the relationship

Skew∆y = Skew∆y|g=0 +
3(1 − p)√

2

σ2Y(
σ2ε + pσ

2
Y

)3/2Mean∆y
to a first order in g.

– There is no first-order effect on the standard deviation of the income growth distribution.

Proof. See Appendix B.

This reduced-form class of income processes generates the salient facts from Section 3. Both in the time

series and in the cross section, mean income growth and income growth skewness are closely linked, while

the income growth dispersion is not. The class also satisfies that the slope of the mean-skewness relationship

is identical in the time dimension and in the cross section, which is consistent with Figure 1.1.
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In the reduced-form framework above, there are no choices and the comparative statics become par-

ticularly simple. In general, strategic choices and equilibrium effects can potentially mitigate the basic

mechanism. Nonetheless, the qualitative feature that growth generates more positive skewness is something

that we argue is likely to hold in settings with choices and equilibrium effects. The basic mechanism is

consistent with many different micro settings.

One class of settings has rigid wages and productivity growth. Monopolistic unions adjusting the wages

subject to a Calvo friction (as is common in the New-Keynesian literature, following Erceg et al. (2000)) and

Nash bargaining with staggered wages subject to a Calvo friction (Gertler and Trigari, 2009) do generate

cyclical skewness, but also cyclical dispersion in the basic set up. The reason why income dispersion is also

cyclical is that income growth dispersion is second order in these frameworks, there are no micro sources of

wage dispersion except the Calvo friction and aggregate shocks. In the context of our proposition, this is

akin to setting σY = σε = 0. To meaningfully study the cyclical fluctuation of dispersion of income growth,

there needs to be nontrivial dispersion of income growth, for example by introducing firm heterogeneity or

both negative and positive shocks.

Another type of settings generating the mean-skewness relationship has match-specific productivities

and wages that respond one-to-one with match-specific productivity, together with the assumption that

productivity growth shocks only affect future potential matches, not current ongoing matches. Wages can be

flexible, as in Hagedorn and Manovskii (2013), but need not be. In the quantitative model framework below,

wages are given by piece-rate contracts, which means that wages respond one-to-one with productivity

despite not being flexible (the framework also includes sequential-auctioning wage setting, so wages are

history dependent).

Next, I introduces the quantitative model of the labor market to investigate to what extent the qualitative

insights from the reduced-form framework can quantitatively account for the cyclical and cross-sectional

variations in income growth skewness.

4.3 Model

Model Framework The model framework is based on Bagger et al. (2014), who estimate a quantitative

job-ladder model using Danish matched employer-employee data. In Bagger et al. (2014), workers and firms

bargain over the piece rate and not the wage. In order to have wages not move one-to-one with productivity,

I make the assumption that productivity growth is not reflected in the productivity of ongoing matches but

only in the productivity of potential future matches. The model innovation is to introduce growth in the

offer-productivity distribution.

I describe the model framework in a setting with deterministic growth. Thereafter, we do comparative

statics exercises which correspond to the cross-sectional empirical result. Finally, I study the effects of
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stochastic shocks which corresponds to the time-series empirical result.

Time is discrete, there is a unit continuum of workers and there is a unit continuum of employment

opportunities with different productivities. Wages are defined as piece-rate contracts, the worker is paid an

endogenously determined share of the match output. Wage setting follows Postel-Vinay and Robin (2002)

and Cahuc et al. (2006): If the worker receives an outside offer, the current and prospective future employer

engage in Betrand competition for the worker’s services.

Production Log output for a firm-worker match is

yit = pit + hit, hit = εit + αi + g(eit)

where pit is the match-specific productivity, εit is a temporary shock, modeled as an AR(1), αi is worker-

specific productivity and eit is the cumulative labor-market experience of the worker. g(eit) captures the

human capital of the worker as a function of experience.

Preferences The worker has log preferences and consumes his wage or unemployment benefit, with dis-

count rate ρ.

Timing In the beginning of the period, εit is revealed. The worker has the option to voluntarily become

unemployed. If the worker is employed, but the value of being employed is lower than the value of being

unemployed, the employer increases the worker’s wage so that the worker is indifferent between working and

not working, and the worker remains employed. If the wage required to keep the worker employed is so high

that the employer would make a loss, the worker becomes unemployed. Employed workers’ experiences are

updated from ei,t−1 to eit = ei,t−1 + 1.

Thereafter, production occurs. An employed worker is paid wit. The process by which wit is determined

will be described below.

At the end of the period, with probability µ the worker leaves the sample. With probability δ the match

is dissolved, the worker finds a new match immediately with probability κ, else he becomes unemployed.

With probability λ1 the worker receives an outside wage offer with match productivity p ′ drawn from the

distribution Ft. With probability λ0, an unemployed worker receives a wage offer, also drawing match

productivity p ′ from the distribution Ft.

Wages Wages are defined as piece-rate contracts. If log production is yit, then the worker receives log

wage wit = rit + yit where Rit = e
rit 6 1 is the endogenously determined piece rate. The value of a match

with productivity p and piece rate r at time t for a worker with human capital ht is denoted Vt(r,p,ht).
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If an employed worker receives an outside offer, the incumbent employer and the outside employer bargain

over the worker’s services. The firm that values the worker the most, the firm with the highest productivity,

wins the bargaining and hires (or retains) the worker.

If the outside employer has higher productivity p ′ > pit, then the outside employer wins the bargaining

by offering a piece rate r ′ satisfying

EtVt+1(r
′,p ′,ht+1) = Et {Vt+1(0,pit,ht+1) + β [Vt+1(0,p ′,ht+1) − Vt+1(0,pit,ht+1)]} .

The employer and the worker share the total surplus EtVt+1(0,p ′,ht+1) − EtVt+1(0,pit,ht+1) with the

worker receiving the share β of the log surplus.6

If the current employer has higher productivity, pit > p ′, then the current employer increases the piece

rate by

EtVt+1(r
′,pit,ht+1) = Et {Vt+1(0,p ′,ht+1) + β [Vt+1(0,pit,ht+1) − Vt+1(0,p ′,ht+1)]}

unless p ′ is so low that the above would result in a lowering of the piece rate.

The value of being unemployed V0,t is equal to employment in the least productive firm. If the worker is

unemployed and receives an offer, then the worker is employed with piece rate given by

EtVt+1(r
′,p ′,ht+1) = Et {V0,t(ht)+ β [Vt+1(0,p ′,ht+1) − V0,t(ht)]}

The Offer-Productivity Distribution The offer-productivity distribution Ft grows at a rate g, gener-

ating exponential growth,

Ft(p) = F(p− gt)

where F is the time-invariant detrended offer-productivity distribution. F has support [p̃min, p̃max]. Therefore,

Ft has support [p̃min + gt, p̃max + gt].

6β is strictly speaking not a Nash bargaining weight since the workers have logarithmic utility and the firms should be risk
neutral. Cahuc et al. (2006) work out a modified Rubinstein bargaining protocol that rationalizes β as the bargaining weight.
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Value Functions The value of an employed worker is given by

Vt(r,p,ht) = max

{
Vt(0, p̃min + gt,ht),

r+ p+
δ(1 − κ)

1 + ρ
V0,t(ht)

+
δκ

1 + ρ

∫ p̃max+gt

p̃min+gt

Et [(1 − β)V0,t(ht) + βVt+1(0, x,ht+1)]dFt(x)

+
λ1

1 + ρ

∫ p̃max+gt

p

Et [(1 − β)Vt+1(0,p,ht+1) + βVt+1(0, x,ht+1)]dFt(x)

+
λ1

1 + ρ

∫p
qt(r,p,ht)

Et [(1 − β)Vt+1(0, x,ht+1) + βVt+1(0,p,ht+1)]dFt(x)

+
1

1 + ρ

[
1 − µ− δ− λ1F̄t(qt(r,p,ht))

]
EtVt+1(r,p,ht+1)

}

where qt(r,p,ht) is implicitly defined as the threshold for which the offer is so low that it does not bid up the

worker’s piece rate. Since the worker always has the option to be unemployed, with value Vt(0, p̃min+gt,ht),

the recursive formulation contains a max operator.

Solving the Model It is possible to reformulate the problem in terms of detrended variables. Introduc-

ing a non-zero growth rate in the offer distribution, we lose analytical tractability but not computational

tractability. The solution method uses that we can solve easily for ∂V/∂p(0,p) by first integrating by parts.

When g = 0 we can solve directly for ∂V/∂p(0,p), when g 6= 0 we instead prove that ∂V/∂p(0,p) is the

unique fixed point of a contraction mapping, and compute it by repeatedly applying the contraction mapping.

The details of the solution are described in Appendix C.

Parameter Values I take parameter estimates from Bagger et al. (2014), who estimate a model of this

form (with g = 0). They estimate the model using indirect inference. The model moments they match to

data are:

1. The survivor functions for unemployment-to-employment transitions, employment-to-unemployment

transitions and job-to-job transitions.

2. The tenure and experience profiles from a Mincer regression of log wage on a cubic in tenure, a cubic

in experience as well as worker and firm fixed effects. They also target the distribution of firm and

worker fixed effects, as well as the autocovariance structure of the error term.

3. The within-job wage growth profile from a within-job regression of log wage growth on a cubic in

tenure. They also target the standard deviation, skewness and kurtosis of the residuals, as well as the

autocovariance of the residuals.
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They also target some aggregate statistics, as well as firm-level value added. They stratify their sample by

years of education into three groups. We use their parameter values for the middle sample with 12-14 years

of schooling.

The monthly discount rate ρ is set to 0.005 and the monthly attrition rate to 0.0018. The offer-

productivity distribution follows a Weibull distribution, F(p) = 1 − exp(−[ν1(p − ν0)]
ν2) with ν0 = pmin =

4.92, ν1 = 9.00, ν2 = 0.70. The transitory productivity shock εit follows an AR(1) with monthly autore-

gressivity η = 0.70 and shock standard deviation σu = 0.10. The workers’ bargaining power is β = 0.30.

The experience accumulation function is a cubic in experience, g(e) = 0.0136e − 0.00039e2 + 0.0000017e3.

The monthly job-separation rate δ is 0.0072.7

Bagger et al. (2014) estimate heterogenous job-finding rates. In the estimation, they link the job-finding

rate heterogeneity to person-specific productivity α. The estimated job-finding rate from unemployment is

λ0(α) =
θ0(α)

1 + θ0(α)
θ0(α) = exp [−0.94 + 24.47α]

and the estimated offer-arrival rate from employment is

λ1(α) =
θ1(α)

1 + θ1(α)
θ1(α) = exp [−2.62 + 2.36α] .

The estimated job-finding probability conditional on a job-separation shock is

κ(α) =
θ2(α)

1 + θ2(α)
θ2(α) = exp [0.41 + 6.25α] .

For the median worker (α = 0), the monthly job-finding rate from unemployment is 0.28, the monthly offer-

arrival rate from employment is 0.07, and the job-finding probability conditional on a job-separation shock

is 0.60.

The variation in worker productivity α is normally distributed with σα = 0.09. In the computations, we

discretize the distribution of α with Gauss-Hermite quadrature using 7 gridpoints.

4.4 Comparative Statics – Varying the Growth Rate

Now we turn to the first model experiment. We vary the growth rate g from −0.03 to 0.02. For each g,

we simulate a population of 10,000 individuals for thirty years, corresponding to a life cycle of work8 and

compute the mean income growth as well as the income growth skewness. Annual income is computed by

aggregating the monthly incomes, with the individuals earning zero labor income while unemployed. When

7Throughout, we refer to the probabilities of job separation, offer arrival and job finding as rates, although strictly speaking
rates refer to continuous-time arrival rates.

8There is a tension between our empirical work, in which we studied workers aged 25-59, and the estimation of Bagger et al.
(2014) who followed workers for a life cycle of 30 years.
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Figure 4.2: The cross-sectional relationship between mean income growth and income growth Kelley’s

skewness. The dots show the relationship of the mean income growth and income growth Kelley’s skewness

for 35 of the 37 educational categories. The curves depict the comparative statics for mean income growth

and income growth Kelley’s skewness of varying g from −0.03 to 0.02.
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computing the model income growth moments, observations with zero annual income in either t or t+ k are

removed, as in our empirical analysis. Individuals who exit the sample (receive a µ shock) are also removed

from the sample.

In Figure 4.2, we plot the comparative statics for the mean income growth rate and the income growth

Kelley’s skewness at the one-year, three-year, and five-year horizons together with the cross-sectional dis-

tribution across educational categories. In the figure, we removed two outliers from the data points. The

model misses somewhat at the one-year horizon, but provides a surprisingly good fit at both the three-year

and five-year horizon. The slope of the mean-skewness relationship of the comparative statics is close to

identical to the cross-sectional slope, and the level only undershoots slightly.

The model also succesfully captures the absence of link between the mean income growth and P90-P10

dispersion of income growth. In Figure 4.3, we display the relationship between the mean income growth

and income growth P90-P10 dispersion at the different horizons. We note that the model captures the level

of dispersion, although the dispersion at the five-year horizon is somewhat at the lower end of the spectrum.

In contrast, varying the job-separation rate δ, the job-finding rate λ0 and the on-the-job offer arrival

rate λ1 fail to capture the cross-sectional relationship. In Figure 4.4, we show the comparative statics of

varying δ from 0.003 to 0.027 (roughly half and four times the estimated δ = 0.0072). Even quadrupling the

job-separation rate is not enough to generate sufficient variation in the mean income growth. Furthermore,

for high job-separation rates, skewness is increasing in the job-separation rate.

In Figure 4.5, we vary the constant term in the expression for the job-finding rate such that the median
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Figure 4.3: The cross-sectional relationship between mean income growth and income growth P90-P10

dispersion. The dots are 35 of the 37 educational categories. The curves depict the comparative statics of

varying g from −0.03 to 0.02.
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job-finding rate ranges from a low 0.05 to a high 0.88. The variation in the job-finding rate can generate a

very high positive skewness, but does not generate much growth together with the skewness. For low values

of the job-finding rate, skewness does not go below 0.

In Figure 4.6, we vary the constant term in the expression for the on-the-job offer arrival rate such

that the median offer-arrival rate ranges from a low 0.03 to a high 0.12. The variation in the on-the-job

offer arrival rate generates a negative relationship between the mean income growth and the income growth

skewness at the three-year and five-year horizons.

I therefore conclude from the comparative statics exercise that variations in growth rates can account

for the cross-sectional relationship between mean income growth and income growth skewness while the

standard labor market parameters cannot.

4.5 Time-Series Relationship – Stochastic Growth Rate

Next, we study the time-series relationship between the mean income growth and the skewness by computing

impulse responses for the mean income growth and income growth skewness. To ease the computational

cost, we restrict the heterogeneity (all households have α = 0) and turn off human-capital accumulation

(hit = 0). It is unlikely that heterogeneity or human-capital accumulation play a quantitative role in the

relative responsiveness of mean income growth and income growth skewness to shocks.

We consider a shock to the growth rate of the offer distribution and a shock to the job-separation rate,

both with autoregressivity of 0.93 at the monthly frequency. The growth shock’s magnitude is 0.02 in

annualized growth. The job-separation rate shock is a lowering of the job-separation rate by 0.03/12, a
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Figure 4.4: The cross-sectional relationship between mean income growth and income growth Kelley’s

skewness. The dots are 35 of the 37 educational categories. The curves depict the comparative statics of

varying the job-separation rate δ from 0.003 to 0.027.
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Figure 4.5: The cross-sectional relationship between mean income growth and income growth Kelley’s

skewness. The dots are 35 of the 37 educational categories. The curves depict the comparative statics of

varying the job-finding rate λ0 such that the median job-finding rate ranges from 0.05 to 0.88.
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Figure 4.6: The cross-sectional relationship between mean income growth and income growth Kelley’s

skewness. The dots are 35 of the 37 educational categories. The curves depict the comparative statics of

varying the on-the-job offer arrival rate λ1 such that the median on-the-job offer arrival rate ranges from

0.03 to 0.12.
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Figure 4.7: Impulse responses for three-year mean income growth and three-year income growth Kelley’s

skewness. The shock to the offer-distribution growth occurs at time 0.
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lowering of the job-separation rate by 35 percent. The magnitudes of the shocks are chosen to generate

responses of roughly similar magnitudes.

In Figure 4.7, we plot the impulse responses of three-year income growth skewness and three-year mean

income growth to a growth shock, based on simulating 1,000,000 individuals. Three years before the shock,

the three-year moments begin to move. Initially, there is a fall in income. This is because on impact, some

households choose to leave their current job to search for a new and better job full time. After the initial

impact, both the mean income growth and the skewness increase, with skewness at peak reaching roughly

0.03 while the growth peaks at 0.01.

In Figure 4.8, we plot the impulse responses of three-year income growth skewness and three-year mean

income growth to a job-separation rate shock, based on simulating 1,000,000 individuals. The fall in the

job-separation rate shock generates an increase in the skewness at peak of approximately 0.025 while the

mean income growth increases by 0.75.

4.5.1 Inferring Moments from the Impulse-Response Functions

As pointed out by Boppart et al. (2017), impulse-response functions are sufficient statistics for a range of

moments. In particular, from the impulse-response functions we can infer the variance and correlation of

the variables.

The linear impulse-response function for a variable X is a mapping (ε,k) 7→ irfx,kε, linear in ε, that
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Figure 4.8: Impulse responses for three-year mean income growth and three-year income growth Kelley’s

skewness. The shock to the job-separation rate occurs at time 0.
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maps a shock ε to the response of variable X at time k after the shock (or before, if k < 0). If the only shock

in the system is ε, the value of Xt can be written in terms of previous shocks on the form

Xt =
∑
k

irfx,kεt−k.

The variance of X is given by σ2ε
∑
k irf

2
x,k. Therefore, the relative volatility of the income growth

skewness, in relation to the volatility of mean income growth is given by

σ(skew)

σ(mean)
=

√∑
k irf

2
skew,k∑

k irf
2
mean,k

where irfskew and irfmean are the impulse responses of the skewness and mean respectively.

Analogously, the correlation of the skewness and mean is given by

ρmean,skew =

∑
k irfmean,kirfskew,k√∑
k irf

2
mean,k

∑
k irf

2
skew,k

.

The underlying assumption for the existence of an impulse-response function is that the model is locally

linear. However, there is a discontinuity with respect to the sign of the shock to the growth rate in our model

framework. Initially, in response to a positive shock, some workers voluntarily become unemployed. This
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Table 4.1: Moments in an environment with only growth shocks. The correlation between the mean income

growth and the income growth skewness at the one-year, three-year, and five-year horizons, as well as the

relative volatility of the skewness compared with the mean income growth. The data columns are the averages

of the moments for the 37 different educational categories.

Corr. Corr (data) Std(skew)/std(mean) Std(skew)/std(mean) (data)

1-year income growth 0.90 0.87 2.63 4.14
3-year income growth 0.97 0.88 2.69 2.78
5-year income growth 0.95 0.88 1.79 2.12

Table 4.2: Moments in an environment with only job-separation shocks. The correlation between the mean

income growth and the income growth skewness at the one-year, three-year, and five-year horizons, as well

as the relative volatility of the skewness compared with the mean income growth. The data columns are the

averages of the moments for the 37 different educational categories.

Corr. Corr (data) Std(skew)/std(mean) Std(skew)/std(mean) (data)

1-year income growth 0.92 0.87 2.95 4.14
3-year income growth 0.99 0.88 3.46 2.78
5-year income growth 0.93 0.88 2.15 2.12

response has no counterpart for negative shocks, workers cannot voluntarily become employed. Nonetheless,

we take the computed impulse responses as impulse-response functions and compute the moments. As

robustness, we also study the impulse response to a negative growth shock.

In Table 4.1, the correlation between the model skewness and model mean are shown, together with a

measure of the relative volatility of the skewness compared to the mean. The model correlations for the

three-year and five-year horizons are higher than the average correlation in the data. The relative magnitude

of the volatility of the skewness compared to the mean is very close to the empirical counterpart, at both

the three-year and five-year horizons. As in the comparative-statics exercise, a growth rate shock does not

capture quantitatively the movements at the one-year horizon. In Appendix A, Figure A.3, we show the

moments computed using a negative impulse response. The results are virtually the same. At no point was

the model calibrated to match any moments directly related to the cyclicality of the skewness, so we regard

this as a success of the model.

Shocks to the job-separation rate generate broadly similar correlations and relative volatility of the

skewness, as shown in Table 4.2. The model driven by job-separation rate shocks overstates the relative

volatility of three-year income growth by 24 percent, but matches the five-yer relative volatility well. Just

as for the growth shock, it misses the one-year relative volatility.
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Figure 4.9: Impulse-response function for job-to-job transition rate, normalized (so peak at three percent).

The shock to the growth rate occurs at time 0.
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4.5.2 The Implications for the Job-to-Job Transition Rate

The growth shock and the job-separation rate shock have differential implications for the job-to-job transition

rate. A growth shock increases the share of job offers that lead to a job change and therefore increases the

job-to-job transition rate. In contrast, a negative job-separation rate shock lowers the share of workers who

were recently unemployed and are climbing up the ladder. It therefore decreases the job-to-job transition

rate. In Figure 4.9 and Figure 4.10, we show the impulse response functions for the growth and job-separation

rate shocks respectively.

A recent literature has documented that the job-to-job transition rate moves with wage growth. Faber-

man and Justiniano (2015) document using US data that the aggregate job-to-job transition rate is highly

correlated with different measures of wage growth. Moscarini and Postel-Vinay (2016) run a regression of

both the unemployment-to-employment transition rate and the employment-to-employment transition rate

on a wage growth measure and find that the regression model only puts weight on the employment-to-

employment transition rate for predicting wage growth. Moscarini and Postel-Vinay (2017) do a two-stage

exercise. First, they run a regression with a total of 17,600 age-education-race-gender-month dummies

on labor market transitions and earnings/wage growth (with some additional controls). This gives age-

education-race-gender-month specific employment-to-employment labor market transition rates as well as

an age-education-race-gender-month specific earnings/wage growth. In the second step, they run a regres-

sion for the 17,600 categories of the estimated labor market transitions (between the three states employment,
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Figure 4.10: Impulse-response function for job-to-job transition rate, normalized (so trough at negative six

percent). The shock to the job-separation rate occurs at time 0.
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non-employment and unemployment, as well as employment-to-employment) and find that there is a pos-

itive relationship between the employment-to-employment transition rate and the nominal wage growth,

controlling for the other labor market transition rates and the unemployment rate. Karahan et al. (2017)

run a regression of the unemployment-to-employment job-finding rate and the employment-to-employment

job-finding rate on labor income, using US state-level data at the quarterly frequency and find that higher

employment-to-employment job-finding rates are associated with higher labor income.

This evidence leads us to argue that a good theory of the comovement of mean income growth and income

growth skewness should generate positive comovement of mean income growth and job-to-job transitions.

Job-separation rate shocks generate a negative correlation of mean income growth and job-to-job transitions

while productivity growth shocks generate positive comovement of mean income growth, income growth

skewness, and job-to-job transitions simultaneously.

5 Concluding Remarks

The connection between mean income growth and the skewness of the income growth distribution is surpris-

ingly tight both in the time-series dimension, in the cross section between educational categories, and in the

time-series dimension for the different educational categories.

The high correlation both in the time dimension and the cross section suggests an underlying deeper
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mechanism and I provide one potential such mechanism: Labor-market frictions together with variations in

productivity growth generate the mean-skewness relationship. Using a reduced-form framework I show that

productivity growth variations generate first-order variations in skewness but only second-order variations

in dispersion.

In a sequential-auctioning job-ladder model, this mechanism quantitatively accounts for the mean-

skewness relationship both in the cross section and in the time dimension. In contrast, variations in

job-finding rates, job-separation rates and on-the-job offer arrival rates do not capture the mean-skewness

relationship. Furthermore, job-separation rate shocks generate a counterfactual negative correlation of the

job-to-job transition rate and mean income growth.

In conclusion, I provide an intuitive mechanism for variations in income growth skewness, and show

with an externally estimated model that the mechanism quantitatively accounts for the variations in income

growth skewness.
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Karahan, F., Michaels, R., Pugsley, B., Şahin, A., and Schuh, R. (2017). Do job-to-job transitions drive

wage fluctuations over the business cycle? American Economic Review, 107(5):353–357.

Krebs, T. (2003). Growth and welfare effects of business cycles in economies with idiosyncratic human capital

risk. Review of Economic Dynamics, 6(4):846–868.

Krebs, T. (2007). Job Displacement Risk and the Cost of Business Cycles. American Economic Review,

97(3):664–686.

McKay, A. (2017). Time-varying idiosyncratic risk and aggregate consumption dynamics. Journal of Mon-

etary Economics, 88:1–14.

Michau, J. B. (2013). Creative destruction with on-the-job search. Review of Economic Dynamics, 16(4):691–

707.

Miyamoto, H. and Takahashi, Y. (2011). Productivity growth, on-the-job search, and unemployment. Journal

of Monetary Economics, 58(6-8):666–680.

31



Moscarini, G. and Postel-Vinay, F. (2016). Wage Posting and Business Cycles. American Economic Review:

Papers and Proceedings, 106(5):208–213.

Moscarini, G. and Postel-Vinay, F. (2017). The relative power of employment-to-employment reallocation

and unemployment exits in predicting wage growth. American Economic Review, 107(5):364–368.

Postel-Vinay, F. and Robin, J.-M. (2002). Equilibrium Wage Dispersion with Worker and Employer Hetero-

geneity. Econometrica, 70(6):2295–2350.

Postel-Vinay, F. and Turon, H. (2010). On-the-job search, productivity shocks, and the individual earnings

process. International Economic Review, 51(3):599–629.

Ravn, M. O. and Sterk, V. (2017). Job uncertainty and deep recessions. Journal of Monetary Economics,

90:125–141.

Schmidt, L. (2016). Climbing and Falling Off the Ladder : Asset Pricing Implications of Labor Market Event

Risk.

Storesletten, K., Telmer, C. I., and Yaron, A. (2001). The welfare cost of business cycles revisited: Finite

lives and cyclical variation in idiosyncratic risk. European Economic Review, 45(7):1311–1339.

Storesletten, K., Telmer, C. I., and Yaron, A. (2004). Cyclical Dynamics in Idiosyncratic Labor Market Risk.

Journal of Political Economy, 112(3):695–717.

Storesletten, K., Telmer, C. I., and Yaron, A. (2007). Asset pricing with idiosyncratic risk and overlapping

generations. Review of Economic Dynamics, 10(4):519–548.

32



A Additional Tables and Figures

Figure A.1: Statistical skewness of the labor income growth (blue solid, left) comoves with the mean of

labor income growth (red dashed). The standard deviation (blue solid, right) does not.
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Table A.2: Regression coefficents for regressing mean income growth on the Kelley’s skewness, skewness,

P90-P10 dispersion and standard deviation of income growth. Standard errors are computed using Newey-

West with one lag. The coefficients for P90-P10 dispersion and standard deviation are not significant at the

ten percent level. The coefficients for Kelley’s skewness and skewness are significant at the 10−10 level.

1-year income growth 3-year income growth 5-year income growth

Kelley’s skewness 4.02∗∗∗ 2.76∗∗∗ 2.09∗∗∗

(0.30) (0.20) (0.21)
Skewness 11.80∗∗∗ 7.56∗∗∗ 5.87∗∗∗

(0.94) (0.55) (0.81)
P90-P10 dispersion -0.29 0.02 0.17

(0.29) (0.21) (0.12)
Standard deviation -0.16 0.01 0.07

(0.13) (0.11) (0.08)

Table A.3: Moments in an environment with only growth shocks, computed using the impulse response

of a negative shock to the growtht rate. The correlation between the mean income growth and the income

growth skewness at the one-year, three-year, and five-year horizons, as well as the relative volatility of the

skewness compared with the mean income growth. The data columns are the averages of the moments for the

37 different educational categories.

Corr. Corr (data) Std(skew)/std(mean) Std(skew)/std(mean) (data)

1-year income growth 0.94 0.87 2.84 4.14
3-year income growth 0.99 0.88 2.84 2.78
5-year income growth 0.98 0.88 1.94 2.12
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B Proof for Generalizing the Simple Example

Proposition B.1. In the above framework,

• The comparative statics varying the steady-state growth rate g give the following relationship between

the mean, standard deviation and skewness of the income growth distribution:

– The mean and skewness of the income growth distribution satisfy the relationship

Skew∆y = Skew∆y|g=0 +
3(1 − p)√

2

σ2Y(
σ2ε + pσ

2
Y

)3/2Mean∆y
to a first order in g.

– There is no first-order effect on the standard deviation of the income growth distribution.

• The immediate response of the mean, standard deviation and skewness of the income growth distribution

to a shock to the growth rate g give the following relationship:

– The mean and skewness of the income growth distribution satisfy the relationship

Skew∆y = Skew∆y|g=0 +
3(1 − p)√

2

σ2Y(
σ2ε + pσ

2
Y

)3/2Mean∆y
to a first order in g.

– There is no first-order effect on the standard deviation of the income growth distribution.

Proof. We show the relationshp first for the comparative statics, then for the one-off shock.

• The steady state detrended distribution of y is p
∑
k>0(1−p)

kF(x+kg). The income growth variance

is

σ2∆ε + (1 − p)g2 + p2(σ2∆Y + g2) + p2(1 − p)(σ2∆Y + (2g)2) + . . . =

(1 − p)g2 + pσ2∆Y + p2g2
∑
k>0

k2(1 − p)k =

= σ2∆ε + pσ
2
∆Y + 2

1 − p

p
g2

so the standard deviation is
√
σ2∆ε + pσ

2
∆Y + 2 1−p

p
g2 which is second-order in g.

Using that E[(∆Y + ∆ε + kg)3] = m3,∆Y + m3,∆ε + 3kg(σ2∆Y + σ2∆ε) + k
3g3, we compute the third
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moment:

m3 = (1 − p)
[
m3,∆ε − 3σ2∆εg− g

3
]
+ p2

∑
k>0

(1 − p)k
[
m3,∆Y +m3,∆ε + 3kg(σ2∆Y + σ2∆ε) + k

3g3
]
=

= (1 − p)
[
m3,∆ε − 3σ2∆εg− g

3
]
+ p(m3,∆Y +m3,∆ε) + 3g(σ2∆Y + σ2∆ε)(1 − p) + p2

∑
k>0

k3(1 − p)kg3.

To a first order in g, the skewness of the change distribution is given by

m3,∆ε + pm3,∆Y + 3(1 − p)σ2∆Yg(
σ2∆ε + pσ

2
∆Y

)3/2
or

Skew∆y = Skew∆y|g=0 +
3(1 − p)√

2

σ2Y(
σ2ε + pσ

2
Y

)3/2Mean∆y
• In response to a shock, the mean growth is pg.

The variance is

(1 − p)E[(∆ε− pg)2] + pE[(∆ε+ ∆Y + g− pg)2] = (1 − p)(σ2ε + p
2g2) + p(σ2ε + σ

2
Y + (1 − p)2g2) =

σ2ε + pσ
2
Y + (1 − p)pg2

so the standard deviation
√
σ2ε + pσ

2
Y + (1 − p)pg2 is second-order in g and the centralized third

moment is

m3 = E[(∆ỹ− pg)3] = (1 − p)E
[
(∆ε− pg)3

]
+ pE[(∆Y + ∆ε+ (1 − p)g)3] =

= (1 − p)
[
m3,∆ε − 3σ2∆εpg− (pg)3

]
+ p

[
m3,∆ε +m3,∆Y + 3(σ2∆ε + σ

2
∆Y)(1 − p)g+ (1 − p)3g3

]
=

= m3,∆ε + pm3,∆Y + 3(1 − p)pσ2∆Yg+ ((1 − p)p3 + p(1 − p)3)g

Therefore, the initial response of skewness, to a first order in g, is

Skew∆y = Skew∆y|g=0 +
3(1 − p)√

2

σ2Y(
σ2ε + pσ

2
Y

)3/2Mean∆y.

Note that Mean∆y = pg.
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C Model Solution

Value Functions First, we rewrite the value functions in terms of normalized productivity p̃ = p− gt.

Vt(r,ht, p̃) = max

{
Vt(0,ht, p̃min),

r+ p̃+ ht + gt+
δ(1 − κ)

1 + ρ
V0,t+1(ht)

+
δκ

1 + ρ

∫ p̃max

p̃min

Et [(1 − β)V0,t+1(ht) + βVt+1(0,ht+1, x)]dF(x)+

+
λ1

1 + ρ

∫ p̃max

p̃−g

Et [(1 − β)Vt+1(0,ht+1, p̃− g) + βVt+1(0,ht+1, x)]dF(x)

+
λ1

1 + ρ

∫ p̃−g
q(r,ht,p̃)

Et [(1 − β)Vt+1(0,ht+1, x) + βVt+1(0,ht+1, p̃− g)]dF(x)

+
1

1 + ρ

[
1 − µ− δ− λ1F̄(q(r,ht, p̃))

]
EtVt+1(r,ht+1, p̃− g)

}

and

V0,t+1 = EtVt+1(0,ht+1, p̃min).

Normalize Value Functions We make the substitution Vt(r,ht, p̃) = Ṽt(r,ht, p̃) +
gt
ρ
+ g
ρ2 and observe

that there is no dependence of Ṽt on t, so we write Vt(r,ht, p̃) = Ṽ(r,ht, p̃) +
gt
ρ

+ g
ρ2 .

The normalized value functions are

Ṽ(r,ht, p̃) = max

{
Ṽ(0,ht, p̃min),

r+ p̃+ ht +
δ(1 − κ)

1 + ρ
Ṽ0(ht)

+
δκ

1 + ρ

∫ p̃max

p̃min

Et

[
(1 − β)Ṽ0(ht) + βṼ(0,ht+1, x)

]
dF(x)+

+
λ1

1 + ρ

∫ p̃max

p̃−g

Et

[
(1 − β)Ṽ(0,ht+1, p̃− g) + βṼ(0,ht+1, x)

]
dF(x)

+
λ1

1 + ρ

∫ p̃−g
q(r,ht,p̃)

Et

[
(1 − β)Ṽ(0,ht+1, x) + βṼ(0,ht+1, p̃− g)

]
dF(x)

+
1

1 + ρ

[
1 − µ− δ− λ1F̄(q(r,ht, p̃))

]
EtṼ(r,ht+1, p̃− g)

}
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and

Ṽ0 = EtṼ(0,ht+1, p̃min).

Solving for ∂V(0,ht,p̃)
∂p̃

By integration by parts,

Ṽ(r,ht, p̃) = max

{
Ṽ(0,ht, p̃min),

r+ p̃+ ht +
δ

1 + ρ
Ṽ0(ht)

+
1

1 + ρ
Et

{
(1 − µ− δ)Ṽ(r,ht+1, p̃− g)

+ λ1β

∫ p̃max

p̃−g

∂Ṽ

∂x
(0,ht+1, x)F̄(x)dx

+ λ1(1 − β)

∫ p̃−g
q(r,ht,p̃)

∂Ṽ

∂x
(0,ht+1, x)F̄(x)dx+

+ δκβ

∫ p̃max

p̃min

∂Ṽ

∂x
(0,ht+1, x)F̄(x)dx

}}

(1)

Plugging in r = 0 and using that q(0,ht, p̃) = p̃− g,

Ṽ(0,ht, p̃) = max

{
Ṽ(0,ht, p̃min),

p̃+ ht +
δ(1 − κ)

1 + ρ
Ṽ0(ht)

+
1

1 + ρ
Et

{
(1 − µ− δ)Ṽ(0,ht+1, p̃− g))

+ λ1β

∫ p̃max

p̃−g

∂Ṽ

∂x
(0,ht+1, x)F̄(x)dx

+ δκβ

∫ p̃max

p̃min

∂Ṽ

∂x
(0,ht+1, x)F̄(x)dx

}}

Differentiating with respect to p̃, we get

∂Ṽ

∂p̃
(0,ht, p̃) = 1 +

1 − µ− δ− λ1βF̄(p̃− g)

1 + ρ
Et
∂Ṽ

∂p̃
(0,ht+1, p̃− g)

when Ṽ(0,ht, p̃) > Ṽ(0,ht, p̃min), i.e., when p̃ > p̃min.

If we assume that ht does not affect the marginal value of p̃ through some sophisticated expectational
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mechanism affecting bargaining, we have a functional equation

∂Ṽ

∂p
(0,ht, p̃) = 1 +

1 − µ− δ− λ1βF̄(p̃− g)

1 + ρ

∂Ṽ

∂p̃
(0,ht+1, p̃− g).

This functional equation has a unique solution in L0([p̃min, p̃max]). Before we proceed to show this,

we need to determine what values F̄ and ∂Ṽ/∂p̃ have for p̃ < p̃min. By naturally extending F, F̄ = 1 for

p̃ < p̃min. The marginal value of productivity is zero when p̃ < p̃min since the worker will voluntarily enter

unemployment regardless. Therefore, ∂Ṽ/∂p̃ = 0 for p̃ < p̃min.

Lemma C.1. The functional equation

f(x) = 1 +
1 − µ− δ− λ1βF̄(x− g)

1 + ρ
f(x− g) (2)

has a unique solution in L0([p̃min, p̃max]), with the convention f(x) = 0 and F̄(x) = 1 for x < p̃min.

Proof. Consider the functional mapping T defined by

Tf(x) = 1 +
1 − µ− δ− λ1βF̄(x− g)

1 + ρ
f(x− g).

It is a contraction mapping under the sup norm. For any f,h, we have

|Tf(x) − Th(x)| =

∣∣∣∣1 − µ− δ− λ1βF̄(x− g)

1 + ρ

∣∣∣∣ |f(x− g) − h(x− g)|
<

1 − µ− δ

1 + ρ
|f(x− g) − h(x− g)| 6

1 − µ− δ

1 + ρ
sup

x∈[pmin,pmax]

|f(x) − h(x)|

so supx∈[p̃min,p̃max] |Tf(x) − Th(x)| < ρT supx∈[p̃min,p̃max] |f(x) − h(x)| with ρT = 1−µ−δ
1+ρ . Note that when

x− g < p̃min, f and h coincide by definition.

Since the mapping is a contraction mapping under the sup norm, Banach’s fixed point theorem applies

and there exists a unique solution to Tf = f in L0. That is, the functional equation has a unique solution.

Note that the contraction mapping suggests a straight-forward way to compute ∂Ṽ(0,ht, p̃)/∂p̃ by it-

eration. Note also that the solution need not be continuous, in fact it is not. For example, when the

productivity increases so that the individual will voluntarily become unemployed two periods into the future

rather than one period into the future, the marginal value of productivity jumps (roughly doubles). These

small discontinuities are an artifact of the discretization of time which would disappear if the model were

framed in continuous time.
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Solving for the Value Function Plugging in the f that solves Equation 2 for ∂Ṽ/∂p̃(0,ht+1, x) in the

integral of Equation 1, we get

Ṽ(r, p̃,ht) = max

{
Ṽ(0, p̃min,ht),

r+ p̃+ ht +
δ

1 + ρ
Ṽ0(ht)

+
1

1 + ρ
Et

{
(1 − µ− δ)Ṽ(r, p̃− g,ht+1)

+ λ1β

∫pmax

p̃−g

f(x)F̄(x)dx

+ λ1(1 − β)

∫ p̃−g
q(r,p̃,ht)

f(x)F̄(x)dx+

+δκβ

∫pmax

pmin

f(x)F̄(x)dx

}}

with Ṽ0 == EV(0,ht+1, p̃min).

Finally we show that there is a solution where decision functions do not depend on ht. We expand the

expression for Ṽ(0, p̃min,ht), and guessing that Ṽ(r, p̃,ht) can be separated into Ṽ(r, p̃,ht) = Ṽ(r, p̃)+Ṽ2(ht)

(with some abuse of notation). Furthermore, assume that q only depends on r and p̃.

We then arrive at the equation

Ṽ(r, p̃) = max

{
Ṽ(0, p̃min),

r+ p̃+ ht +
δ

1 + ρ
Ṽ0

+
1

1 + ρ
Et

{
(1 − µ− δ)Ṽ(r, p̃− g)

+ λ1β

∫pmax

p̃−g

f(x)F̄(x)dx

+ λ1(1 − β)

∫ p̃−g
q(r,p̃,ht)

f(x)F̄(x)dx+

+δκβ

∫pmax

pmin

f(x)F̄(x)dx

}}

(3)

which determine the policy functions q and the binary maximization choice.

Solving for the Value Function Numerically For a given q, Equation 3 can quickly be iterated (with

the integrals pre-computed) to get a candidate Ṽ. We therefore iterate the expression until we have a

converged candidate Ṽ, then compute a new policy function q, and iterate over until convergence. The
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algorithm is similar in spirit to Howard policy iteration.

Solving for Transitions We solve for the transition dynamics by standard value function iteration. To

minimize the numerical discrepancy between our method for solving for the steady state and our value

function iteration for the transition, we compute the integrals for the value function iteration using integration

by parts as well.
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