
Unemployment Dynamics with Rigid Variable-Pay Contracts∗

Karl Harmenberg†, Caio Koslyk‡, Erik Öberg§

June 4, 2025

Abstract

Do wage-contract rigidity and variable pay matter for the Diamond-Mortensen-Pissarides theory of

unemployment dynamics? Hagedorn and Manovskii (2008) suggested using the volatility of real wages

and steady-state level of tightness to infer the worker bargaining weight and outside option, and found

that with this strategy, the DMP model does explain the observed volatility of unemployment. We assess

whether this finding is robust to amending the model with rigid variable-pay contracts, following Broer,

Harmenberg, Krusell, and Öberg (2023). For given parameters, neither contract rigidity nor variable pay

affect unemployment dynamics, but they do affect wage volatility in response to a productivity shock.

With a realistic degree of contract rigidity, and variable-pay contracts calibrated to explain intensive-

margin fluctuations in hours worked, the calibrated model cannot explain the observed volatility of

unemployment.

1 Introduction

A large literature has investigated the capability of the Diamond-Mortensen-Pissarides (DMP) model of fric-

tional unemployment dynamics to explain the variability of unemployment observed in US data.1 Ljungqvist

and Sargent (2017) identified that the key determinants of the model capability to do so are the model and

parameter choices that affect the fundamental surplus ratio—the fraction of production that may be al-

located to vacancy creation. In the standard DMP model with Nash bargaining, this ratio equals 1 − z,

where z is the ratio of workers’ outside option and match productivity. Hagedorn and Manovskii (2008),

henceforth HM, suggested a calibration strategy for the standard model which targets the observed volatility
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of hourly wages and the steady state level of tightness. Given moderately procyclical wages in the data,

this calibration strategy results in a low worker bargaining weight and high value of the outside option of

the worker, and thus a small fundamental surplus ratio, implying that the model can explain the observed

volatility of unemployment.

In this paper, we investigate whether HM’s calibration strategy is robust to extending the standard

model with two pervasive features of the US labor market: First, that wage contracts are rigid and, second,

that wage contracts allow for some variability in hours worked and pay.2 Specifically, we integrate the rigid

variable-pay contracts in Broer, Harmenberg, Krusell, and Öberg (2023), henceforth BHKO, into a standard

DMP labor market model with Nash bargaining and exogenous separations subject to stochastic productivity

shocks, and evaluate unemployment volatility following HM’s calibration strategy.

BHKO contracts form the solution to a contracting problem in which workers have disutility from working,

firms choose hours worked, the firm has limited commitment, and where underlying productivity shocks are

not contractable. In this setting, a contract is a wage-hours schedule, from which firms can request more

hours worked in exchange for more pay. In this sense, the firm has the “right to manage” and intensive-margin

fluctuations in hours worked are “demand determined”. In contrast to BHKO, who considered a competitive

market for such contracts, we assume that matched workers and firms bargain over such contracts. We also

assume that contracts are rigid: incumbent matches face a fixed probability of renegotiation each period,

following Calvo (1983). This setup generalizes the standard model of flexible bargaining over fixed-pay-

fixed-hours contracts: we recover the standard model under a zero Frisch elasticity when the probability of

recontracting equals one.

We first establish that neither contract rigidity, nor variable pay, affect unemployment dynamics, taking

parameters as given. In the DMP framework with exogenous separations, unemployment fluctuations result

from fluctuations in vacancy creation, which is only affected by wage rigidity among new hires. This result

is well known in the literature, see, e.g., Pissarides (2009). Variable pay does not affect unemployment

dynamics, because our contracts satisfy an efficiency condition, so that hours worked are set to equalize the

marginal rate of transformation with the marginal rate of substitution in response to a productivity shock.

By the envelope condition, changes in hours worked to a productivity shock will not affect the profits made

by the firms, and thus neither affect vacancy creation.

In contrast, contract rigidity and variable pay do affect wage dynamics, and therefore affect the calibration

outcome when targeting wage volatility. Specifically, contract rigidity poses a problem for the model’s

capability to explain unemployment volatility under HM calibration strategy. With a smaller fraction of

contracts renegotiated in response to a productivity shock, the calibration calls for a higher worker bargaining

weight to generate enough volatility of average wages, in line with the data. With a higher worker bargaining

2For evidence concerning the spread and properties of variable-pay contracts, see Devereux (2001), Swanson (2007), Shin

and Solon (2007), Grigsby, Hurst, and Yildirmaz (2021) and Kurmann and McEntarfer (2024).
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weight, the worker’s outside option must be much worse in order to match steady state tightness, generating

a large fundamental surplus and less unemployment volatility. With an average renegotiation frequency of

30 weeks, the model-implied standard deviation of unemployment falls by one order of magnitude.

Variable-pay contracts are a potential remedy to this problem, as with more variable pay, the model

explains more of the variability of average hourly wages given the worker bargaining weight and contract

renegotiation frequency. With variable pay, the calibration thus results in a smaller worker bargaining

weight, and, in turn, a higher worker outside option. The variability of within-contract pay is determined

by the Frisch elasticity of labor supply. For a unitary Frisch elasticity (an estimate commonly used in the

macroeconomic literature) the effect is large, but if calibrated to match the observed fluctuations in average

hours worked among the employed, as in our baseline, we find a Frisch elasticity of around 0.15, which is

also close to microeconomic estimates of the Frisch elasticity. With this parameter value, variable pay helps,

qualitatively, in increasing the volatility of unemployment but quantitatively the model only explains a small

fraction of the unemployment variability in the data.

Our findings thus amount to a caution against HM’s calibration strategy, which uses moderately procycli-

cal hourly wages as evidence in favor of a high outside option of the worker, and a low fundamental surplus

ratio. This finding is sensitive to the assumed frequency of wage renegotiation. Under a realistic degree

of wage rigidity, the DMP model calibrated using HM’s strategy generates much too little unemployment

volatility compared to the data. Adding a realistic degree of variable pay to the negotiated contracts is not

sufficient to undo this result.

Other papers have criticized HM’s calibration for other reasons. Hornstein, Krusell, and Violante (2005)

and Costain and Reiter (2008) show that it leads to implausibly large responses of unemployment to changes

in unemployment insurance. Hall and Milgrom (2008) argue that, although HM can replicate unemployment

volatility, it does so only by implying a Frisch elasticity of labor supply well above empirical estimates. Our

critique is not that HM’s calibration implies unreasonable predictions, but rather that the calibration strategy

is not robust: once taking into account that wage contracts are infrequently renegotiated, the calibration

strategy no longer delivers the high unemployment volatility observed in the data.

In terms of the model components, the closest papers are Gaur, Grigsby, Hazell, and Ndiaye (2024)

and Bils, Chang, and Kim (2022). Gaur, Grigsby, Hazell, and Ndiaye (2024) develop a DMP model with

dynamic incentive contracts under moral hazard. Firms offer output-contingent pay to elicit effort. Similarly

to our paper, they find that due to an envelope condition, intensive-margin fluctuations in pay offsets the

fluctuations in productivity, and leave profits and vacancy creation unaffected. Our results show that this

finding does not hinge on their particular setup with dynamic incentive contracts, but also applies to our

setting without any moral hazard problem. Bils, Chang, and Kim (2022) study a model in which effort is

determined through a Nash bargaining problem, allowing effort to vary ex post both because of changes in
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labor supply and labor demand. In contrast, with our contracts, hours worked is fully determined by labor

demand ex post.

2 Model

Our departure point is a standard discrete time search-and-matching model with exogenous separations

(Pissarides, 1985, 2000), largely following Hagedorn and Manovskii (2008). Our setup deviates from HM

in four dimensions. First, vacancy posting costs are constant. Second, contracts are not rebargained every

period, but renegotiated within a match with a constant probability 1 − ω, following Bils et al. (2022).

Third, the firm may vary hours worked n, with workers suffering disutility from working more hours v(n).

Fourth, wage contracts are not restricted to a constant hourly wage, but allow for an unrestricted wage-hours

schedule w(n), taken as given when firms decide how many hours the worker shall work.

Within a period, timing is the following:

1. Aggregate productivity z is realized

2. Wage contracts are bargained

3. Production and consumption takes place

4. Current matches are separated

5. New vacancies are created

6. New matches are formed

We first describe the basic model environment, then the wage contracting problem, and finally the worker

and firm Bellman equations, and other equilibrium conditions, taking the wage contract as given.

2.1 Environment

There is a unit mass of infinitely-lived households that may be either employed or unemployed. All un-

employed workers search for jobs. Employed workers who negotiated their contract in period t − s earn

labor income wt−s(nt) in period t while unemployed workers receive a constant flow value of unemployment

benefits, denoted by b. There is no savings technology. The household time-0 utility function is

E
∞∑
t=0

βt[ct − v(nt)],

where β ∈ (0, 1) is the intertemporal discount factor, common to workers and firms. If employed, consumption

equals the per-period wage payment, ct = wt(nt), nt denotes the hours of work supplied at time t. If

unemployed, ct = b.
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An operating firm has a position which is either filled or vacant. A firm with a filled position generates

profits equal to ztf(nt) − wt(nt), given a wage contract wt(·) and hours worked nt. The firm unilaterally

chooses hours worked (“right to manage”) and maximizes profits, taking the wage contract as given. Hence,

the problem of maximizing period profits conditional on a wage contract is static:

πt = max
nt

ztf(nt)− w(nt).

Firms attract workers from the unemployment pool for vacant positions by posting a vacancy at constant

cost c. Productivity zt follows an AR(1) process in logs,

log zt = ρ log zt−1 + ϵt, (1)

where ϵt are i.i.d. innovations.

The number of unemployed workers is denoted by ut, the number of open vacancies by vt. The total

number of successful matches is given by a constant returns to scale matching function m(ut, vt), and we

define market tightness as θt =
vt
ut
. The probability that an unemployed worker finds a job in period t is

λu(θt) =
m(ut, vt)

ut
. (2)

Similarly, an open vacancy matches with an unemployed worker with probability

λv(θt) =
m(ut, vt)

vt
. (3)

Every period, an existing match separates with an exogenous constant probability σ. Employment, et,

evolves according to the following law of motion,

et+1 = (1− σ)et +m(ut, vt), (4)

the number of employed workers in the next period equals the number of workers retained from the current

period plus the number of new matches formed. Employment and unemployment are related by

ut = 1− et. (5)

2.2 Bargaining over rigid variable-pay contracts

Firms and workers Nash bargain over the wage-hours contract w(·) upon forming a match, and also whenever

struck by the Calvo fairy. The bargaining problem is

maxwt(·),nt+s
(
SWt (zt;wt)

)γ (
SFt (zt;wt)

)1−γ
,

nt+s = argmax
nt+s

zt+sf(nt+s)− wt(nt+s) ∀s > 0,
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where γ and 1 − γ are the worker and firms’ respective bargaining weight. The respective surpluses in the

maximization problem are given by

SFt (zt;wt) = Et

[ ∞∑
s=0

(β(1− σ)ω)s (zt+sf(nt+s)− wt(nt+s))

]
︸ ︷︷ ︸

Value during the contract

+ Continuation valueFt ,

SWt (zt;wt) = Et

[ ∞∑
s=0

(β(1− σ)ω)s (wt(nt+s)− v(nt+s)− b)

]
︸ ︷︷ ︸

Value during the contract

+ Continuation valueWt .

The expressions for the respective continuation values are determined in equilibrium. What is important

in this subsection is that the continuation values are independent of the bargained contract.3

Characterizing the optimal contract We now proceed to show that the optimal contract is on the form

wt(n) = v(n) + wmint , that is, the wage schedule is the disutility of the worker plus a lump sum transfer.

First, a necessary condition for a contract being optimal is that adding a constant lump sum transfer to

the contract should not improve the objective. Note that the constraint of the bargaining problem is not

affected by adding a constant to the contract. Writing wϵt(n) = wt(n)+ ϵ, plugging in wϵt instead of wt in the

objective, differentiating with respect to ϵ, and evaluating at ϵ = 0 yields the following necessary first-order

condition,

SWt (zt;wt)

SFt (zt;wt)
=

γ

1− γ
. (6)

Regardless of the shape of the wage contract, an optimal contract must assign a share γ of the surplus to

the worker.

As a result, the solution to the maximization problem is not affected by adding Equation (6) as an

additional constraint to the problem. By substituting SWt (zt;wt) = γSt(zt;wt) and SFt (zt;wt) = (1 −

γ)St(zt;wt) (with St(zt;wt) = SWt (zt;wt)+S
F
t (zt;wt)) in the objective, the maximization problem becomes

one of maximizing total surplus,

maxwt(·),nt+s St(zt;wt),

nt+s = argmax
n

zt+sf(n)− wt(n) ∀s ≥ 0,

3In equilibrium, the continuation values are given by

Continuation valueFt = Et

[ ∞∑
s=1

(β(1− σ)ω)s
1− ω − λv(θt)

ω
SF
t+s(zt+s)

]
,

Continuation valueWt = Et

[ ∞∑
s=1

(β(1− σ)ω)s
1− ω − λu(θt)

ω
SW
t+s(zt+s)

]
.

However, in what follows, what matters is not the exact values of the two but that they are exogenous to the match and the

contract.
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where

St(zt;wt) = Et

[ ∞∑
s=0

(β(1− σ)ω)s (zt+sf(nt+s)− v(nt+s)− b)

]
︸ ︷︷ ︸

Value during the contract

+ Continuation valueFt + Continuation valueWt .

First, observe that the maximum surplus, in the absence of the constraint, is obtained if and only if the

efficiency condition

zt+sf
′(nt+s) = v′(nt+s)

holds for all s ≥ 0. Now, it is also readily seen that if wt(n) = v(n) + wmin, then the solution to

maxnt+s zt+sf(nt+s)−wt(nt+s) satisfies zt+sf ′(nt+s) = v′(nt+s).
4 The maximum of the constrained problem

thus coincides with the maximum of the unconstrained problem and the solution to the constrained problem

is to set wt(n) = v(n) + wmin.

Putting the two results together, the optimal contract satisfies

wt(n) = v(n) + wmint . (7)

where wmint is set so that

SWt (zt;wt)

SFt (zt;wt)
=

γ

1− γ
. (8)

Thus, all contract vintages satisfy efficiency, so hours worked at time t is shared across matches. We let

n∗t denote hours worked at time t, implicitly defined by

ztf
′(n∗t ) = v′(n∗t ). (9)

In sum, even though the contracts are not contingent on productivity nor output, they implement the

first best allocation by equalizing the marginal variable pay with the marginal disutility of labor. This

efficiency property of the contract stems from the fact that both worker and firm utility are linear, and thus

transferable across the bargaining parties, and replicates the allocation achieved in a competitive market

for contracts, as in BHKO. The difference to BHKO is that here, the “base pay” wmin is set to ensure

that workers and firms get the surpluses in accordance with their respective bargaining power, whereas in a

competitive market, “base pay” is determined by a zero profit condition.

2.3 Bellman equations

When describing the Bellman equations, we take the wage contracts wt−s(·) as given, as well as hours worked

at time t for contracts of vintage t − s, which we denote by n∗t|t−s. Denote the present discounted value of

4The converse, that the optimal contract must be on the form wt(n) = v(n) + wmin, holds as long as the distribution of

zt+s has full support.
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a matched firm employing a worker with wage contract wt−s by Jt−s(zt); the value of an unfilled vacancy

by V (zt); the value of an employed worker at wage contract wt−s by Wt−s(zt); and the utility value of an

unemployed worker by U(zt). The Bellman equations for the firm values are

Jt−s(zt) = zf(n∗t|t−s)− wt−s(n
∗
t|t−s) + β E

[
(1− σ)

[
ωJt−s(zt+1) + (1− ω)Jt+1(zt+1)

]
+ σV (zt+1)

]
, (10)

V (zt) = −c+ β E
[
λv(θt) Jt+1(zt+1) + (1− λv(θt))V (zt+1)

]
. (11)

which together implies a Bellman equation for firm surplus

SFt−s(zt) ≡Jt−s(zt)− V (zt) = ztf(n
∗
t|t−s)− wt−s(n

∗
t|t−s) + c+

β (1− σ)ωE
[(
SFt−s(zt+1)− SFt+1(zt+1)

)]
+ β(1− σ − λv(θt))ESFt+1(zt+1) (12)

The Bellman equations for the worker values are

Wt−s(zt) = wt−s(n
∗
t|t−s)− v(n∗t|t−s) + β E

[
(1− σ)

[
ωWt−s(zt+1) + (1− ω)Wt+1(zt+1)

]
+ σU(zt+1)

]
, (13)

U(zt) = b+ β E
[
λu(θt)Wt+1(zt+1) + (1− λu(θt))U(zt+1)

]
, (14)

which together implies a Bellman equation for worker surplus

SWt−s(zt) ≡Wt−s(zt)− U(zt) = wt−s(n
∗
t|t−s)− v(n∗t|t−s)− b+

β(1− σ)ω E
[
SWt−s(zt+1)− SWt+1(zt+1)

]
+ β(1− σ − λu(θt))ESWt+1(zt+1) (15)

2.4 Free entry condition

There is free entry into vacancy posting. This implies that, in equilibrium, the value of an open vacancy for

a firm is zero, i.e., V (zt) = 0 for all zt. By Equation (11), we have

c

βλv(θt)
= EJt+1(zt) = ESFt+1(zt+1). (16)

3 Equilibrium properties

3.1 Equilibrium labor-market flows

We now show that the unemployment dynamics in our model are, to a first order, identical to the dynamics

in a standard DMP model with flexible fixed-pay-fixed-hours contracts, holding the fundamental surplus

constant.

In the DMP model, vacancy creation is a result of fluctuations in firm surplus, which, under Nash

bargaining, is a constant share of total surplus. Total surplus for matches formed at t− s is defined as

St−s(zt) ≡ SFt−s(zt) + SWt−s(zt).
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Adding up Equations (12) and (15), we have

St−s(zt) = ztf(n
∗
t|t−s)− v(n∗t|t−s) + c− b+ β(1− σ)ω E

[
St−s(zt+1)− St+1(zt+1)

]
+ β(1− σ)ESt+1(zt+1)− βE(λv(θt)SFt+1(zt+1) + λu(θt)S

W
t+1(zt+1)).

Using Equation (16), we get

St−s(zt) = ztf(n
∗
t|t−s)− v(n∗t|t−s)− b+ cθ + β(1− σ)ω E

[
St−s(zt+1)− St+1(zt+1)

]
+ β(1− σ − λu(θt))ESt+1(zt+1).

The above equation for the surplus for contract vintage t− s was derived under full generality with respect

to the shape of the wage contract for vintage t− s. We now impose that wage contract optimality, implying

efficiency as in Equation (9), and that hours worked is shared across contract vintages:

St−s(zt) = ztf(n
∗
t )− v(n∗t )− b+ cθ + β(1− σ)ω E

[
St−s(zt+1)− St+1(zt+1)

]
+ β(1− σ − λu(θt))ESt+1(zt+1).

Since all contract vintages have the same flow surplus (and share all other parameters), it is immediate that

St−s(zt) = St(zt) for all s ≥ 0. We write St−s(zt) = S(zt), arriving at the law of motion for the surplus

given by

S(zt) = ztf(n
∗
t )− v(n∗t )− b+ cθ + β(1− σ − λu(θt))ES(zt+1). (17)

Finally, invoking the surplus-splitting property of the contract, Equation (8), in Equation (16) yields

c

βλv(θt)
= γES(zt+1), (18)

which together with (17) and the constant returns to scale property of the matching function yield

S(zt) = ztf(n
∗
t )− v(n∗t )− b+ β(1− σ − (1− γ)λu(θt)))ES(zt+1). (19)

Equations (18) and (19), together with Equation (9), restated here,

ztf
′(n∗t ) = v′(n∗t ), (20)

determine the evolution of the surplus S(zt), labor-market tightness θt, and hours worked n∗t .

Holding n∗t fixed, Equation (19) is identical to that of a standard DMP model with flexible fixed-pay-

fixed-hours contracts, apart from the feature that we explicitly model the disutility of labor. This, together,

with the efficiency condition in Equation (20), implies that, to a first order, the dynamics of total surplus

and thus labor-market flows are isomorphic to the standard DMP model.
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Concretely, linearizing the flow surplus, ztf(n
∗
t )− v(n∗t )− b around the steady state yields

ztf(n
∗
t )− v(n∗t )− b = zssf(n

∗
ss)− v(n∗ss)− b+ f(n∗ss)dzt + [zssf

′(n∗ss)− v′(n∗ss)]︸ ︷︷ ︸
=0

dn∗t

where efficiency implies, through the envelope theorem, that the effect of productivity on total surplus is, to

a first order, invariant to changes in n∗t . Rearranging, the elasticity of flow surplus to productivity is given

by

ztf(n
∗
t )− v(n∗t )− b

zssf(n∗ss)− v(n∗ss)− b
=

(
1 +

zssf(n
∗
ss)

zssf(n∗ss)− v(n∗ss)− b

)
dzt
zss

.

By comparison, in HM, where the disutility of labor is not explicitly modeled, the elasticity of flow surplus

to productivity is given by

zt − b

zss − b
=

(
1 +

zss
zss − b

)
dzt
zss

.

In our setting,
zssf(n

∗
ss)−v(n

∗
ss)−b

zssf(n∗
ss)

is the fundamental surplus. The size of the fundamental surplus scales

the impact of a productivity shock on flow surplus, and through the flow surplus the dynamics of labor-

market flows, as pointed out by Hagedorn and Manovskii (2008) and Ljungqvist and Sargent (2017). A

low surplus ratio implies that steady state profits must be low, which in turn implies that small changes in

productivity will have, ceteris paribus, large effects on profits and, in equilibrium, on vacancy creation. The

dynamics in our model are, to a first order, identical to the dynamics in a standard DMP model, holding

parameters constant (if not explicitly modelling the disutility of labor in the standard model, b must be

recalibrated so that the fundamental surplus is identical across the models).

This result echoes that of Gaur, Grigsby, Hazell, and Ndiaye (2024), who similarly showed that the

particular shape of an optimal variable-pay contract in the presence of a moral hazard friction does not

influence unemployment dynamics. In our setting, the firm chooses hours worked whereas in their setting

the worker chooses effort. Although our setting and theirs have different contract environments, they share

that the contract is written so as to incentivize the decision maker and in both settings the envelope-theorem

logic applies.

3.2 Equilibrium wage dynamics

To solve for equilibrium wage dynamics, we need to determine the level of base compensation, wmint . We

characterize the solution for wmint to a first order. In Appendix A, we show that the first-order condition of

the Nash bargaining problem given by Equation (6) can, to a first order, be written as recursive expression

relating the base wage of cohort t, wmint , and the expected base wage of t+ 1, wmint+1 :

wmint−s =
1

τ
wmin,∗t−s +

τ − 1

τ
Ewmint−s+1, (21)
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where wmin,∗t is the “target wage” , i.e., the wage that would have been optimal if the parties could bargain

every period, satisfying

wmin,∗t = b+ γ [ztf(n
∗(zt)) + cθt − (b+ v(n∗(zt)))] , (22)

and where τ = 1
1−ωβ(1−σ) .

Given the solution for each cohort-specific base wage, we can derive a law of motion for aggregate base

wage payments in the economy wmin,aggt ,

wmin,aggt = (1− σ)ωwmint−1 + [1− (1− σ)ω]wmint . (23)

This expression represents the weighted average of the newly-renegotiated base wage and its lagged value

for those matches that survived from the previous period, combined with the base wage of newly-formed

matches. Since all cohorts have the same variable component in their wage contracts, aggregate total wage

payments is given by

waggt (zt) = wmin,aggt + v(n∗(zt)), (24)

where, again, n∗(zt) is implicitly determined by the efficiency condition (9).

In sum, neither contract rigidity nor variable-pay affect unemployment dynamics holding parameters

constant, but as evident from Equations (23) and (24), they do affect equilibrium wage dynamics. These

ingredients thus make a difference for the model’s capability to explain unemployment dynamics if moments

of wage dynamics constitute calibration targets, as in HM. Next, we investigate this quantitatively.

4 Quantitative results

We solve for a first-order approximation around steady state. For all parameter values considered, the

equilibrium is unique.

4.1 Calibration

Our calibration proceeds in three steps. First, several parameters are directly taken from HM, based on

external empirical estimates and typical values used in the literature. Second, for the new parameters

governing disutility of labor and wage rigidity, we provide our own estimates. Third, given these parameters,

we estimate the unemployment utility b and the bargaining weight γ following the calibration strategy in

HM. In so doing, the model is set at a weekly frequency, following HM’s convention of assuming twelve weeks

per quarter. We adopt the following functional forms: f(nt) = nt; v(nt) = κ
n1+ψ
t

1+ψ ; m(ut, vt) =
utvt

(ult+vlt)
1/l .

The latter ensures that job-finding and vacancy-filling probabilities lie between 0 and 1, while satisfying

constant returns to scale. All parameter values are reported in Table 1.
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Table 1: Calibrated parameter values.

Parameter Definition Value

From HM

β Discount factor 0.991/12

l Matching function parameter 0.3995

c Cost of posting a vacancy 0.5840

σ Job separation rate 0.0081

Externally calibrated

ρz Persistence of productivity process 0.9786

σz Standard deviation of productivity innovations 0.0033

ψ Inverse of Frisch elasticity 6.3898

ω Base wage renegotiation probability 0.9555

κ Scale parameter for disutility from labor when zss = 1 1

Internally calibrated

b Value of nonmarket activity 0.4241

γ Worker’s bargaining power 0.5140

Note: This table reports parameter values adopted or calibrated in this paper in the baseline specification.

Parameters taken from HM. The following parameters are determined as in HM. They are either

taken as standard values in the literature, inferred from empirical estimates using U.S. labor market data, or

calibrated by imposing steady-state conditions consistent with observed features in the data. The discount

factor is set to β = 0.991/12, which corresponds to a weekly rate implied by a quarterly discount factor of 0.99.

The matching function parameter l is calibrated to match the average weekly job-finding rate λu = 0.139

given an estimate of steady state market tightness, θ = 0.634. The separation rate is set to σ = 0.0081.

Together, these values imply a steady-state unemployment rate of u = σ
σ+λu

≈ 0.0551.5

Productivity process. Labor productivity, zt, is measured in the data using quarterly, seasonally ad-

justed real output per total hours worked in the U.S. nonfarm business sector, as reported by the Bureau

of Labor Statistics (BLS) (FRED series: OPHNFB). For the sample period 1951:Q1 to 2004:Q4, we com-

pute an autocorrelation of 0.692 and an unconditional standard deviation of 0.0106 for the HP-filtered log

productivity series (using a smoothing parameter of 1600).

In the model, productivity is assumed to follow an AR(1) process in logs, as described in Equation 1, with

5When implementing the method in HM using the same target moments for calibrating l, we find a value slightly different

than that reported in HM. Our value is 0.3995, whereas HM use 0.407.
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mean log z = 1, autocorrelation parameter ρz, and innovations follow a standard normal distribution with

standard deviation σz. We calibrate ρz and σz of our weekly process for z such that the quarterly averages

of the model-generated data match the quarterly empirical moments. For that, the model-simulated series is

aggregated to quarterly frequency, logged, and HP-filtered. This calibration implies a weekly autocorrelation

ρz = 0.9786 and a standard deviation for the shocks of σz = 0.00333.

Labor disutility and contract rigidity. We calibrate the Frisch elasticity of labor supply 1
ψ by exploiting

the optimality condition for hours worked implied by the model. Given an optimal contract, the marginal

rate of substitution equals the marginal rate of transformation v′(nt) = ztf
′(nt). Under our parametric

assumptions, in logs this condition is

log nt =
1

ψ
log zt −

1

ψ
log κ.

We thus recover the Frisch elasticity, 1/ψ from the slope coefficient from a regression of log hours worked on

log labor productivity.

We estimate the Frisch elasticity using the BLS’s average weekly hours (FRED: PRS85006023). The

resulting regression coefficient is 0.1565, which implies ψ = 6.39, corresponding to a Frish elasticity of 0.16.

This value is in line with microeconomic estimates in the empirical literature, see, e.g., Martinez, Saez, and

Siegenthaler (2021) and Sigurdsson (2020).

The scale parameter κ in the disutility of labor is calibrated to ensure that steady-state output is identical

across specifications. Specifically, κ is set such that in steady state, total hours worked sum to one, nss = 1.

With our functional forms, the efficiency condition in Equation (9) is n =
(
z
κ

)1/ψ
, and we thus get κ = zss.

We set the contract duration parameter ω = 0.9555, which corresponds to an average contract duration

of approximately 22.5 weeks. While a contract duration of three quarters (36 weeks) would better align with

typical empirical estimates, the calibration of ψ imposes a practical upper bound on the contract stickiness

parameter ω: ω = 0.9555 is the highest feasible value for ω before the worker’s outside option b becomes

negative under ψ = 1, which is the highest value of that parameter considered in the results section.

Unemployment utility and bargaining weight. The two remaining parameters—the worker’s value

of nonmarket activity b and the worker’s bargaining power γ—are jointly calibrated following the strategy

proposed by HM. Specifically, b is set to match the average level of market tightness, θ = 0.634 as reported

in HM, and the bargaining weight γ is calibrated to match the empirically observed elasticity of wages with

respect to productivity.

To estimate this elasticity, we regress the HP-filtered log of real hourly wages on the HP-filtered log

of real labor productivity. We find a wage elasticity of 0.4064 for the period 1951:Q1 to 2004:Q4. Hourly

13



Table 2: Simulation and calibration results across parameter configurations.

ω = 0.956, ψ = 6.390 (Baseline) ω = 0.956, ψ → ∞ ω = 0.956, ψ = 1

Measure No-var pay Our model Diff. (%) No-var pay Our model Diff. (%) No-var pay Our model Diff. (%)

b 0.3685 0.4241 – 0.5038 0.5038 – 0.0038 0.2276 –

γ 0.5452 0.5140 – 0.5452 0.5452 – 0.5452 0.3868 –

Fund. surplus ratio 0.4962 0.4406 -11.21 0.4962 0.4962 0.00 0.4962 0.2724 -45.10

std(u) 0.0097 0.0109 12.37 0.0097 0.0097 0.00 0.0097 0.0174 79.38

ω = 0, ψ = 6.390 ω = 0, ψ → ∞ (HM Replication) ω = 0, ψ = 1

Measure No-var pay Our model Diff. (%) No-var pay Our model Diff. (%) No-var pay Our model Diff. (%)

b 0.8172 0.8175 – 0.9525 0.9525 – 0.4525 0.4548 –

γ 0.0567 0.0559 – 0.0567 0.0567 – 0.0567 0.0516 –

Fund. surplus ratio 0.0475 0.0472 -0.63 0.0475 0.0475 0.00 0.0475 0.0452 -4.84

std(u) 0.0848 0.0853 0.59 0.0848 0.0848 0.00 0.0848 0.0883 4.13

wages are constructed as the product of the labor share (FRED: PRS85006173) and real labor productivity.6

To ensure consistency, we compute the model-implied elasticity of wages using the same procedure as in

the data: after generating the quarterly wage series from the model (as done for productivity), we regress

HP-filtered log real wages on HP-filtered log productivity to recover the implied εw,p, and adjust γ until it

matches the empirical target.

4.2 Unemployment dynamics

In Table 2, we display the resulting unemployment volatility for our baseline calibration together with the

calibrated parameter values for γ and b and the implied fundamental surplus ratio. As seen in the Table,

the resulting standard deviation of unemployment in our model is 0.01, far below the empirical standard

deviation around 0.08. Evidently, calibrating our model in the same manner as HM does not overcome “the

unemployment volatility puzzle”.

To understand what model and calibration choices explain the difference between the unemployment

volatility in our model and in HM, Table 2 also displays the analogous numbers for the corresponding

model without variable pay, and for several other comparison models where we vary the contract rigidity

parameter ω and the labor supply disutility parameter ψ. All models are recalibrated to match steady state

tightness and the elasticity of wages with respect to productivity. In the “no variable pay” model, hours

6Alternatively, one could estimate the wage elasticity using the BLS’s direct measure of real hourly compensation (FRED:

COMPRNFB), which yields an estimated elasticity of 0.4329.
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worked is constant within a match and the wage payment is fully determined by Nash bargaining either

at match formation or at the time of renegotiation. The version of the “no variable pay” model with fully

flexible wages, ω = 0, and constant hours worked, ψ → ∞ (Frisch elasticity → 0), is a near replication of

HM, in which there is no unemployment volatility puzzle. The only difference to HM is the slightly different

calibration targets (reflecting that we measure productivity as output per hour, instead of output per worker)

and that we abstract from fluctuations in vacancy posting costs.

Comparing the top three panels with the bottom three panels in Table 2, we see that by making wage

contracts rigid, the calibration results in a higher fundamental surplus ratio, and lower unemployment

volatility. Ceteris paribus, more rigid contracts make total wages less volatile, and targeting the same wage

volatility thus calls for higher bargaining weight γ. With a higher bargaining weight, the unemployment

utility flow b is smaller to match the same level of steady state tightness.

Comparing the two columns within each parameter configuration, we see that allowing for variable hours

and pay in the contracts results in a lower fundamental surplus ratio, and higher unemployment volatility.

Ceteris paribus, variable pay amplifies fluctuations in total wage payments, and the calibration thus calls for

a lower bargaining weight γ and a higher unemployment utility flow b.

However, by again comparing across rows, we see that variable pay only makes a quantitatively meaningful

difference if wage contracts are sufficiently rigid. With flexible rebargaining, the marginal effect of variable

pay on wage volatility is small, and does therefore not affect the calibration outcome significantly. Moreover,

by comparing columns within the top panels, we see that given rigid wage contracts, variable pay only makes

a quantitatively meaningful difference if the Frisch elasticity 1/ψ is high enough. In the limit ψ → ∞,

hours worked do not respond to changes in the marginal wage, and by implication, the within-contract wage

payment is held constant. For a unitary Frisch elasticity (a commonly used value in the macroeconomic

literature), the effect is very large, almost doubling the standard deviation of unemployment.

In our baseline, ψ = 6.39, implying a Frisch elasticity of 0.156. This is substantially smaller than the

common macroeconomic estimate of unity, reflecting that fluctuations in hours worked at the intensive

margin is significantly smaller than fluctuations in total hours worked (the latter is the natural target for a

model with no distinction between the intensive and the extensive margin). With this value, the standard

deviation of unemployment increases by 12 percent when allowing for variable pay, which is meaningful, but

far from sufficient to restore the low unemployment volatility implied by rigid wage contracts under this

calibration strategy.

5 Conclusion

Our findings amount to a caution against interpreting HM’s finding that moderately procyclical hourly wages

as evidence in favor of a high outside option of the worker, and a low fundamental surplus ratio. This finding

15



is sensitive to the assumed frequency of wage renegotiation, and adding a realistic degree of variable pay to

the negotiated contracts is not sufficient to undo this sensitivity.

We reached this conclusion using a particular model for variable pay. In the data, workers’ pay may

not only reflect compensation for hours worked but also effort. Cyclical fluctuations in effort would also

contaminate our estimates of the exogenous fluctuations in labor productivity. Although there is a paucity

of empirical measures of aggregate effort, it would be interesting to revisit the exercise in this paper where

the driving process for labor productivity and the wage contract parameters are set to also match cyclical

fluctuations in effort.
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A Solving for the base wage wmin
t

This appendix derives an expression for the base wage component, wmin
t , which is negotiated at the start of

a match in period t as part of a contract that splits the surplus according to Nash bargaining.

Consider the surplus of a firm belonging to cohort t, Equation (12), given by:

SFt (zt) = ztf(n
∗
t|t)− wt(n

∗
t|t) + c+

β (1− σ)ωE
[(
SFt (zt+1)− SFt+1(zt+1)

)]
+ β(1− σ − λv(θt))ESFt+1(zt+1)

Taking a first-order Taylor approximation of SFt (zt+1), the firm’s surplus in t+1 for firms of cohort t,

around wmint+1 , we obtain:

SFt (zt+1)− SFt+1(zt+1) ≈
∂SFt (zt+1)

∂wmin
t

∣∣∣∣
wmin
t =wmin

t+1

(wmin
t − wmin

t+1). (25)

Define µt(zt+1) as the (minus) marginal effect of the base wage negotiated in period t on the continuation

value of a firm from cohort t in state zt+1. Formally:

µt(zt+1) = − ∂SFt (zt+1)

∂wmin
t

∣∣∣∣
wmin
t =wmin

t+1

(26)

Taking the derivative of SFt (zt+1) with respect to wmin
t , evaluated at wmin

t = wmin
t+1 , and applying the

expression recursively, yields:

µt(zt+1) = −

[
−1− β(1− σ)ω E

(
∂SFt (zt+2)

∂wmin
t

∣∣∣∣
wmin
t =wmin

t+1

)]

= 1 + β(1− σ)ω Eµt(zt+2). (27)

Substituting this into the firm surplus yields:

SFt (zt) = ztf(n
∗
t|t)− wt(n

∗
t|t) + c+

β(1− σ)ω E
[
µt(zt+1)(w

min
t − wmin

t+1)
]
+ β(1− σ − λv(θt))ESFt+1(zt+1). (28)

Now consider the surplus in Equation (15) for a worker belonging to cohort t:

SWt (zt) = wt(n
∗
t|t)− v(n∗t|t)− b+

β(1− σ)ω E
[
SWt (zt+1)− SWt+1(zt+1)

]
+ β(1− σ − λu(θt))ESWt+1(zt+1)

Taking a first-order Taylor approximation of SWt (zt+1), the worker’s surplus in t+1 for firms of cohort t,

around wmint+1 , we obtain:

SWt (zt+1)− SWt+1(zt+1) ≈
∂SWt (zt+1)

∂wmint

∣∣∣∣
wmint =wmint+1

(wmint − wmint+1 ) (29)
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Define ϵt(zt+1) as the marginal effect of the base wage negotiated in period t on the continuation value

of a worker from cohort t in state zt+1. We get:

ϵt(zt+1) =
∂SWt (zt+1)

∂wmin
t

∣∣∣∣
wmin
t =wmin

t+1

. (30)

To derive its recursive form, we differentiate SWt (zt+1) with respect to wmin
t , evaluated at wmin

t = wmin
t+1 :

ϵt(zt+1) = 1 + β(1− σ)ω E

[
∂SWt (zt+2)

∂wmin
t

∣∣∣∣
wmint =wmint+1

]

= 1 + β(1− σ)ω Eϵt(zt+2). (31)

Thus, the worker surplus becomes:

SWt (zt) = wt(n
∗
t|t)− v(n∗t|t)− b+

β(1− σ)ω E
[
ϵt(zt+1)(w

min
t − wmin

t+1)
]
+ β(1− σ − λu(θt))E

[
SWt+1(zt+1)

]
. (32)

We now characterize the determination of the base wage wmin
t through Nash bargaining. The base wage

wmin
t is set to divide the total match surplus between the worker and the firm according to the worker’s

bargaining weight γ. Denoting the total surplus from the match as the sum of the individual surpluses

SFt (zt) + SWt (zt), the Nash solution implies the standard surplus-sharing condition of Equation (8):

(1− γ)SWt (zt) = γSFt (zt). (33)

To solve for wmin
t , we combine the expressions above and use the following auxiliary relationships:

1. ϵt(zt+1) = µt(zt+1), i.e., the marginal increase in worker’s surplus equals the negative of the marginal

decrease in firm’s surplus due to an increase in base wage in period t,

2. Wage schedule: wt(n) = v(n) + wmint ,

3. From the definition of the market tightness, θt =
vt
ut
., along with Equations (2) and (3), we have that

λu(θt) = θtλv(θt),

4. Free-entry condition in Equation (16): c
βλv(θt)

= ESFt+1(zt+1),

5. The surplus-splitting property of firms and workers of cohort t+ 1: ESWt+1(zt+1) =
γ

1−γES
F
t+1(zt+1).

Substituting Equations (28) and (32) into the Nash bargaining condition (33), and using the equations

above, the base wage wmin
t satisfies:

wmin
t =

γ
[
ztf(n

∗
t|t) + cθt

]
+ (1− γ)

[
v(n∗t|t) + b

]
− wvt (n

∗
t|t) + β(1− σ)ω E

[
ϵt(zt+1)w

min
t+1

]
1 + β(1− σ)ω E

[
ϵt(zt+1)

] , (34)
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where wvt (nt) corresponds to the variable pay component in period t, and it is equal to the disutility of the

worker, v(nt).

In a fully flexible wage environment (ω = 0), the base wage reduces to the standard Nash bargaining

solution:

wmin,∗
t = b+ γ [ztf(n

∗(zt)) + cθt − (b+ v(n∗(zt)))] (35)

where wmin,∗t is the “target wage” , i.e., the wage that would have been optimal if bargaining occurred every

period, and where hours worked in period t, n∗t , is implicitly defined by Equation (9).

With ϵt(zt) =
∂SWt (zt)

∂wmin
t

= 1 + β(1 − σ)ω E
[
ϵt(zt+1)

]
, we can rewrite the Nash-bargained base wage in

Equation (34) as a convex combination of the flexible-wage benchmark wmin,∗
t and the expected future base

wage:

wmin
t =

1

ϵt(zt)
wmin,∗
t +

(
ϵt(zt)− 1

ϵt(zt)

)
E
[
wmin
t+1

]
. (36)

The weight depends on ϵt(zt), which admits the following closed-form expression:

ϵt(zt) = 1 + β(1− σ)ω E
[
ϵt(zt+1)

]
=

∞∑
j=0

[
β(1− σ)ω

]j
=

1

1− β(1− σ)ω
, (37)

therefore, a higher ϵt(zt) places more weight on the expected future wage, reflecting greater inertia in base

wage adjustment due to longer base wage contracts.
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