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Abstract

The unemployment-risk channel amplifies an initial contraction through a reduction

in consumption demand by workers who fear unemployment. Crucial for this are the

dynamics of job separations and firm hiring. In U.S. data, the job-finding rate responds

slower to identified macroeconomic shocks than the separation rate, but accounts for a

similar share of the unemployment response. We calibrate a tractable heterogeneous-

agent new-Keynesian model with endogenous separations and sluggish vacancy creation

to match these facts. The share of output fluctuations due to the unemployment-risk

channel is twice as large as in a standard model with exogenous separations and free

entry.
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1 Introduction

One of the key risks individuals face throughout their working lives is that of involuntary

unemployment. Fluctuations in this risk of losing one’s job, or of not quickly finding a new

one, is a key feature of business cycles. Because workers are not perfectly insured against this

risk, their consumption response to rising fear of unemployment may amplify any contrac-

tionary shock to the economy. We label this amplification mechanism the unemployment-risk

channel (URC).1

While traditional macroeconomic models, typically assuming full insurance, had no room

for idiosyncratic shocks in the theory of business cycles, a recent paradigm shift toward

heterogeneous-agent models has pointed out the possible implications of time-varying indi-

vidual risks for aggregate demand (Kaplan and Violante, 2018). In particular, a nascent

“HANK-SAM” literature has integrated the canonical macroeconomic framework for study-

ing unemployment with search-and-matching frictions (SAM) into incomplete-markets mod-

els with price rigidities (HANK), highlighting the potential role of time-varying unemploy-

ment risk for fluctuations in precautionary savings and, thus, aggregate demand. Much

of this literature follows early SAM models in their focus on the job-finding rate as the

source of fluctuations in unemployment. Our aim in this paper is to extend a workhorse

HANK-SAM framework to account for the dynamics of unemployment risk observed in U.S.

data, including fluctuations in inflows to unemployment from separations, and investigate

the implications for the contribution of the URC to business-cycle fluctuations.

Our assessment begins with an empirical investigation that quantifies the role of job-loss

and job-finding rates in shaping business-cycle fluctuations in unemployment. In particular,

we document two stylized facts regarding the response of unemployment, and unemployment

risk, to identified demand and supply shocks in US data. First, movements in the separation

rate and the job-finding rate are of similar importance for the response of unemployment.

Second, the separation rate peaks more than six months ahead of the trough in the job-

finding rate. The importance of separations and the lagged dynamics of the job-finding rate

also show in unconditional times-series data.

Standard HANK-SAM frameworks cannot account for these stylized facts because they

assume the typical Diamond-Mortensen-Pissarides (DMP) setup with a constant separation

1This unemployment-risk channel is summarized in the minutes of an FOMC meeting in
the wake of the Great Recession: “fear of unemployment could well lead to further in-
creases in the saving rate that would dampen consumption growth in the near term”. See
https://www.federalreserve.gov/monetarypolicy/fomcminutes20090318.htm.
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rate and with free entry by firms into posting vacancies (Ravn and Sterk, 2021; McKay and

Reis, 2021; Challe, 2020). Free entry implies that vacancy creation is infinitely elasticity with

respect to changes in job values and, hence, that vacancy creation and thus job-finding rates

jump contemporaneously in response to any shock, inconsistent with the empirical findings.

We study the ability of two extensions to an otherwise standard HANK-SAM framework to

account for the stylized facts: endogenous separations that fluctuate in response to changing

economic conditions and sluggish vacancy posting with a less than infinite elasticity to the

value of a filled vacancy. Given an otherwise standard calibration of the model, and an

average real wage chosen to target the volatility of unemployment in U.S. data, we show how

the two stylized facts together identify the strengths of the vacancy-posting and separation

elasticities.

Using our augmented HANK-SAM model, we quantify the URC, defined as the amplifi-

cation arising from imperfect insurance against idiosyncratic unemployment risk. The URC

accounts for about a third of unemployment fluctuations. This share is twice as large as

the share in a standard HANK-SAM model without endogenous separations and sluggish

vacancy creation, recalibrated to imply the same volatility of unemployment. This results

from two opposing effects: endogenous separations amplify the URC while sluggish vacancy

creation dampens it. Endogenous separations result in a front-loaded response of job-loss

risk, which affects hosueholds’ income in the short term. Finitely elastic vacancy creation

results in backloaded responses of unemployment-duration risk, which affects households’

income at a longer horizon. In their precautionary-savings decisions, households care more

about near-term income loss relative to long-term income loss.

Apart from making the theory consistent with the stylized facts, the estimated model

has a number of other attractive properties. First, both contractionary demand and supply

shocks lead to a hump shaped fall in employment, in contrast to standard new-Keynesian

models (Gaĺı, 1999), but in line with the data (Ramey, 2016).2 This is also true for completely

transitory shocks as an initial rise in separations raises the number of matches but–contrary

to the standard model–not vacancies, leading to persistently lower job-finding rates.

Second, the model generates total unemployment volatility in accordance with the data

without excessively low values of the fundamental surplus, or steady-state match profits, in

contrast to to a broad class of search-and-matching models with free entry (Shimer, 2005;

Hall, 2005; Hagedorn and Manovskii, 2008; Ljungqvist and Sargent, 2017). Although intro-

2Complementary to our focus on cyclical fluctuations in income risk, Guerrieri et al. (2022) show that
a HANK model with multiple sectors and acyclical income risk can also generate demand-driven recessions
from contractionary supply shocks.
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ducing endogenous separations and finitely-elastic vacancy creation have opposing effects on

the contribution of the URC, they both amplify the total response of unemployment for any

given value of the fundamental surplus..

Third, although a substantial share of recession unemployment is accounted for by a

surge in separations, vacancy creation does not surge, as in typical calibrations of free-entry

models with endogenous separations. The model thus produces a standard Beveridge-curve

relationship.

After a brief literature review, the rest of the paper is structured as follows. In Section

2, we present our two stylized facts. In Section 3, we outline the model. In Section 4,

we characterize and discuss the model propagation mechanism, in particular the URC. In

Section 5, we show how the stylized facts can be accounted for by having endogenous sepa-

rations and finitely-elastic vacancy creation, and how these features matter for quantifying

the unemployment-risk channel. Section 6 concludes.

Related literature. Our study is most related to the literature on HANK-SAM models,

in particular Ravn and Sterk (2021), but also Den Haan et al. (2018), McKay and Reis

(2021), Challe (2020), Gornemann et al. (2021), Kekre (2022) and Jung (2023). Similar to

Cho (2023) and Graves (2020), we study the importance of the unemployment-risk channel.

Cho (2023) reports an “MPC puzzle” where a calibration to the empirical estimates of the

marginal propensity to consume generates counterfactually volatile aggregate consumption in

a HANK-SAM framework. Graves (2020) studies a two-asset model and finds that aggregate

shocks are amplified through a flight-to-liquidity mechanism. In relation to these two papers,

our focus and contribution is with respect to the calibration of the labor-market dynamics,

introducing sluggish vacancy creation together with endogenous separations in a tractable

zero-liquidity model.

In addition, our paper is related to several other bodies or work. First, the importance

of fluctuations in the separation rate for unemployment fluctuations in unconditional time-

series data is discussed extensively in Fujita and Ramey (2009) and Shimer (2012). Elsby

et al. (2009), Barnichon (2012) and Elsby et al. (2015) argue that separations are more

important when unemployment starts to increase from a low point or begin to fall from a

peak. Mueller (2017) shows that the separation rate of high-wage earners is particularly

highly counter-cyclical. We add to this literature by providing new evidence on the response

of separations to identified demand and supply shocks.

Second, the study of finitely elastic vacancy creation goes back at least to Fujita and
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Ramey (2005). Several recent papers have explored related aspects of labor-market dynamics

under the lens of finitely elastic vacancy creation, and also provided other micro-foundations.

See, e.g., Coles and Kelishomi (2018), Leduc and Liu (2020), Haefke and Reiter (2020),

Mercan et al. (2024), Engbom (2021) and Den Haan et al. (2021). We add to this literature

both in terms of providing new evidence from identified demand and supply shocks, where

we show that the delay between the peak of the separation rate and the trough of the

job-finding rate identifies the entry elasticity in our model, as well as by analyzing the

implications of sluggish vacancy creation for business-cycle dynamics in a model with both

incomplete markets and pricing frictions, thus having an unemployment-risk channel.

Third, our paper, together with the aforementioned HANK-SAM papers, builds a bridge

between two existing new-Keynesian literatures which respectively either have heterogeneous

agents but no search-and-matching frictions (see, e.g., Oh and Reis, 2012; McKay and Reis,

2016; Guerrieri and Lorenzoni, 2017; Bayer et al., 2019; Hagedorn et al., 2019; Auclert

et al., 2020; Luetticke, 2021)3 or search-and-matching frictions but a representative agent

(see, e.g., Walsh, 2005; Krause and Lubik, 2007; Gertler et al., 2008; Trigari, 2009; Gertler

and Trigari, 2009; Gaĺı, 2010; Ravenna and Walsh, 2012; Christiano et al., 2016, 2021).

With a real business cycle model, Den Haan et al. (2000) also stressed the importance

of endogenous separations for business-cycle fluctuations, but through an interaction with

capital adjustment costs rather than household saving decisions as in our paper. Jung

and Kuester (2015) characterize optimal labor-market policies in a similar framework with

endogenous search effort.

Finally, our model attributes a large fraction of unemployment fluctuations to the ineffi-

cient unemployment-risk channel. While we do not analyze policy in this paper, this result

potentially motivates a large role for stabilizing policy interventions, both in response to de-

mand and supply shocks. Because the unemployment-risk channel is due to the interaction

between separation decisions made in the labor market, and consumption decisions made by

the households, these interventions encompass both traditional monetary and fiscal transfer

policy as well as firm subsidies. In follow-up work, we quantify fiscal multipliers in response

to common fiscal policy designs in a similar framework (Broer et al., 2024).4

3Bayer et al. (2019) highlight the portfolio rebalancing channel of cyclical income risk, which, through its
effect on firms’ financing costs, may partly explain a delayed response in vacancy creation. Another closely
connected literature has explored counter-cyclical income and unemployment risk as a driver of aggregate
demand, see, e.g., Challe and Ragot (2016), McKay (2017) and Harmenberg and Öberg (2021).

4Also using HANK-SAM models, but without finitely elastic vacancy creation, McKay and Reis (2021)
and Kekre (2022) show that unemployment insurance can be used to stabilize demand-driven fluctuations,
while Dengler and Gehrke (2021) show correspondingly that match-saving firm subsidies can be used to
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2 Two stylized facts about U.S. unemployment risk

Unemployment and unemployment risk rise when either more employed workers lose their

jobs or when fewer unemployed workers find new ones. In this section, we document the

relative importance of these two drivers of unemployment fluctuations in the US economy.

We document two stylized facts. First, fluctuations in the separation and job-finding rates

on average account for similar shares of unemployment fluctuations. Second, their relative

importance changes over the cycle: fluctuations in separations are more important earlier,

while the job-finding rate accounts for a higher share later. In other words, fluctuations in

the separation rate lead the job-finding rate. We show how these stylized facts hold both in

response to identified monetary policy (“demand”) shocks and TFP (“supply”) shocks, as

well as in unconditional time-series data.

2.1 Data

Labor-market flows. Our labor-market flow data is constructed using gross flows in the

Current Population Survey (CPS) micro data following the methodology in Shimer (2012).

It spans 1967-06 to 2019-12.5 The monthly transition probabilities are derived from observed

flows and seasonally adjusted. To account for time aggregation, we retrieve the transition

probabilities from estimating a three-state continuous-time model, where workers are either

employed (E), unemployed (U) or inactive (I), i.e., out of the labor force. The monthly

job-finding probability (the “UE probability”) is calculated as the probability of at least

one transition from unemployment to employment conditional on not transitioning out of

the labor force. The separation probability (the “EU probability”) is calculated in a similar

manner. Although both are discrete-time probabilities and not continuous-time rates, from

here one we refer to them as the job-separation rate and the job-finding rate respectively.

Details are in Appendix A.1.

In Figure 1, we display the evolution of the unemployment rate alongside the estimated

time series for the job-finding and the separation rate. For this figure, the time series are

filtered using a Christiano and Fitzgerald (2003) band-pass filter where features below a

periodicity of 12 months are filtered out.

stabilize demand-driven fluctuations.
5The data from 1967-06 to 1975-12 were tabulated by Joe Ritter and made available by Hoyt Bleakley.
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(a) Unemployment (b) Transition rates (monthly)

Figure 1: Unemployment and labor-market transition probabilities.

Shock series. We use Romer and Romer (2004)’s monthly series of monetary policy

shocks, identified using a narrative method, extended by Miranda-Agrippino and Ricco

(2021). As a measure of shocks to total factor productivity (TFP), we use the first dif-

ference of the quarterly TFP series in Fernald (2015), which is adjusted for variation in

capacity utilization.

Other time series. The other time series we use are standard and retrieved from the

Federal Reserve Economic Data.

2.2 Impulse responses to identified shocks

We compute impulse responses for the labor-market transitions using a smoothened version

of the local projection method from Jordà (2005) introduced by Barnichon and Brownlees

(2019).6 For a generic outcome Yt, we estimate

Yt+h = αY
h νt + βY

h Xt + Yt , (1)

separately for horizons h ∈ {0, 1, ..., T}, where νt is the shock series, Xt is a set of

controls, and Yt is an error term. We set the smoothing parameter for the smoothened

impulse responses to λ = 104.

6Plagborg-Møller and Wolf (2021) show that local projection and VARs estimate the same impulses
responses when the lag structure is unrestricted. Li et al. (2024) show in a large Monte Carlo study that
smoothing is beneficial in terms of lower variance for a moderate increase in bias.
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Our specifications of Equation (1) follows Ramey (2016). For the analysis of monetary

policy shocks, the controls include the contemporaneous value and two lags of log industrial

production, the unemployment rate, the log of consumer prices, and the log of commodity

prices. We also include two lags of the nominal interest rate and the monetary shock series.7

Including contemporaneous controls amounts to imposing a recursiveness assumption: with

this specification, we assume that innovations to monetary policy do not affect the unemploy-

ment rate in the same month. In the case of TFP shocks, we include as controls a quadratic

time trend, two lags of the shock (to account for serial correlation in the shock series) as well

as the following variables: log real GDP per capita, log real stock prices per capita, log labor

productivity (equal to real GDP divided by total hours worked), and the dependent variable.

The estimation period is 1969-01 to 2007-12 for the responses to monetary policy shocks and

1967Q4 to 2015Q4 for the TFP shocks. We compute standard errors using a Newey and

West (1987) correction for autocorrelation, and report 90 percent confidence intervals. The

presented impulse responses are normalized so that a monetary policy shock (TFP shock)

generates an increase (decrease) in the nominal interest rate (TFP) of one percent on average

over the first year. When computing these impulse responses, we do not impose any filter

but use the raw data directly.

In Figure 2, we display the estimated responses of unemployment, the job-separation

(EU) rate, and the job-finding (UE) rate, as well as the nominal interest rate, in response

to a contractionary monetary policy shock. The monetary shock generates a hump-shaped

increase in unemployment, an increase in the job-separation rate and a decrease in the

job-finding rate. On impact, the separation (job-finding) rate falls (rises) slightly before

it increases (decreases). In Appendix A.1, we show that these impulse responses are very

similar when excluding the control variables but that the sizes of the impact responses vary

across specifications and are, in general, not significant.

In Figure 3, we display the estimated responses of unemployment, the job-separation rate,

the job-finding rate, as well as of TFP, to a negative TFP shock. As with the contractionary

monetary policy shock, the negative productivity shock generates a hump-shaped increase

in unemployment, an increase in the job-separation rate and a decrease in the job-finding

rate. On impact, we also see that the separation (job-finding) rate falls (rise) slightly before

it increases (declines). Again, these responses are not much affected by the control variables,

except that the size and the sign of the impact responses vary, see Appendix A.1.

7For commodity prices we use the CRB Commodity Price Index as in Coibion (2012).
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Figure 2: Responses to a monetary policy shock.
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Figure 3: Responses to a TFP shock.
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2.3 Stylized facts

Fact 1: Separations account for a significant share of unemployment fluctuations.

In order to quantify the importance of changes in the separation rate and job-finding rate to

fluctuations in unemployment, we use the static decomposition proposed by Shimer (2012).

We calculate the steady-state unemployment rate implied by current probabilities of sepa-

ration (EUt) and job finding (UEt) rate using the formula uss
t = EUt

EUt+UEt
, which, given the

high value of the US job-finding rate, approximates actual unemployment very well. We ap-

proximate the share of fluctuations in the unemployment rate stemming from movements in

the job-separation rate as EUt

EUt+UEss , thus holding the job-finding rate constant at its average

value. Correspondingly, the variation in the unemployment rate stemming from movements

in the job-finding rate equals EUss

EUss+UEt
.

Figure 4 shows the evolution of the steady-state unemployment rate and the respective

contributions of the labor-market flows. Panel (a) uses the unconditional time series data.

Here, the variation in the job-separation rate contributes 40 percent and the variation in

the job-finding rate contributes 58 percent, respectively (because of the non-linearity in the

definition of the steady-state unemployment rate, the contributions do not exactly sum to 100

percent). In panel (b), we show the evolution of the same variables in response to a monetary

policy shock. Here, the job-separation rate contributes 59 percent and the job-finding rate

contributes 43 percent. Finally, in panel (c), we show the evolution of the steady-state

unemployment rate and the respective contributions in response to a productivity shock. The

job-separation rate contributes 47 percent and the job-finding rate contributes 58 percent.

We conclude a broad pattern: movements in the job-separation rate account for a substantial

share of fluctuations in the unemployment rate.

Fact 2: The separation rate leads the job-finding rate. Figure 5 illustrates the

lead-lag relationship between the job-separation rate and the job-finding rate in the data.

In panel (a), we show the correlation structure of the unconditional time series of the job-

separation rate and the job-finding rate. The correlation peaks when the job-finding rate

lags the job-separation rate by 6 months. In panel (b), we show the smoothened impulse

responses to a monetary policy shock. Separations peak after 11 months while the trough for

the job-finding rate occurs after 27 months, implying that the job-separation rate leads the

job-finding rate by 16 months in response to a monetary policy shock. In panel (c), we show

the smoothened impulse responses to a TFP shock. Separations peak after 6 quarters while

the trough for the job-finding rate occurs after 9 quarters, implying that the job-separation
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(a) Unconditional data (b) Monetary policy shock

(c) TFP shock

Figure 4: Variance decomposition of unemployment.
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(a) Unconditional data (b) Monetary policy shock

(c) TFP shock

Figure 5: The job-separation (EU) rate leads the job-finding (UE) rate.

rate leads the job-finding rate by 9 months in response to a productivity shock. Again, we

conclude that there is a broad pattern: movements in the job-separation rate significantly

lead movements in the job-finding rate.

In sum, we have documented two stylized facts, which hold true both in unconditional

time series data and in response to two identified and conceptually different business cycle

shocks. First, fluctuations in the separation rate accounts for a sizable share of unemploy-

ment fluctuations, ranging between 40 and 59 percent across the different settings. Second,

the relative importance of separations changes over the cycle: fluctuations in separations are

more important earlier, while those in the job-finding rate account for a higher share later,

with the separation rate leading the job-finding rate by between 6 and 16 months. These

two facts will discipline our business-cycle model, presented in the next section.
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Relation to the literature. The stylized facts documented here are in broad accordance

with findings in the existing literature. Starting with the facts in the unconditional US time

series, Fujita and Ramey (2009) (FR) and Rogerson and Shimer (2011) similarly document

that fluctuations in the separation rate lead the job-finding rate. Using the same gross-flow

data up until 2004, FR document that fluctuations in the separation share account for 41

percent of the fluctuations in the unemployment rate.8 Shimer (2012) documents a smaller

contribution of fluctuations in the separation rate of 28 percent when using the same gross

flow data.9 These differences likely reflect slight differences in how the final data set is

constructed, but all findings point to a substantial role of fluctuations in the separation rate

in accounting for unemployment fluctuations.10 Two choices in particular may affect the

results of this exercise with unconditional time-series data. First, FR document that the

contribution of the separation rate increases to 55 percent when the data are detrended by

taking first differences, rather than calculating deviations from an HP-filter trend. This raises

the question whether our decomposition is sensitive to the detrending method. In Appendix

A.1, we show that the two facts that we document are robust to replacing the bandpass filter

with an HP filter, a one-sided HP filter or a linear trend. Second, both Shimer (2012) and

FR show that the contribution of the separation rate falls when restricting the sample to the

post-1987 period. In Appendix A.1, we show that this also holds for our analysis: in this

shorter, more recent, sample, the contribution of the separation rate is 28 percent, which is

smaller but nevertheless sizable. Neither the filtering method nor the sample period affect

the result that the separation rate leads the job-finding rate.

Regarding the findings to identified shocks, Graves et al. (2023) document a similar

lead-lag pattern between separation rates and job-finding rates to monetary policy shocks

retrieved through high-frequency identification. Oh and Rogantini Picco (2025) show that

the same pattern holds also for identified macro uncertainty shocks.

For TFP shocks, Gaĺı (1999) and Basu et al. (2006) documented that hours rise in

response to negative TFP shocks in contrast to the rise in unemployment documented here.

8Elsby et al. (2009) document that the separation rate is even more cyclical when restricting to involun-
tary job loss.

9Using transition rates estimated from unemployment duration data, Shimer (2012) finds an even smaller
share: 24 percent. We opt for using gross-flow data, as duration-based data is confounded by flows in and
out of the labor force when measuring the transition rates.

10In Shimer (2012), the sample period stops in 2010, in FR it stops in 2004, whereas it runs to 2019 in
our data. Shimer (2012) and FR aggregate the monthly data to a quarterly frequency, whereas we work
directly with monthly data. FR corrects the data for margin error, whereas we and Shimer (2012) do not.
FR calculates the contribution of the separation rate using a slighlty different formula, which yields an exact
decomposition, as opposed to the approximate decomposition used here and in Shimer (2012).
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These findings are thoroughly discussed in Ramey (2016), here we briefly summarize why our

results differ.Basu et al. (2006) use an annual series of Solow residuals cleaned for variation in

capacity utilization. The updated quarterly counterpart of that series, provided by Fernald

(2015), is what we use here. With this updated series, Ramey (2016) shows that hours fall in

a hump-shaped manner, mimicking the rise in unemployment documented here.Gaĺı (1999)

used long-run restrictions to identify technology shocks in a bivariate VAR. The resulting

shock series, however, does not pass an over-identifying restriction test (Francis and Ramey,

2004), can be forecasted with other macroeconomic variables (Ramey, 2016), and the finding

that hours rise to these shocks is not robust to assuming that hours worked per capita is

stationary in the long-run (Christiano et al., 2003). Francis et al. (2014) provide a shock

series building on the same idea of using long-run restrictions, but in a manner that overcomes

many of these problems. In particular, they identify technology shocks by maximizing the

contribution of such shocks to the forecast-error variance of labor productivity at a long but

finite horizon. In Appendix A.1, we show that we get similar results as the ones documented

above when using this shock series.

3 Model

In this section, we present a tractable equilibrium model that can match the evidence pre-

sented in Section 2 and be used to quantify the importance of the unemployment-risk chan-

nel for business cycle fluctuations. We do not aim to match all the features of the impulse

responses in Section 2, which would call for many additional ingredients, but only the high-

lighted stylized facts.11

We build on Ravn and Sterk (2021)’s framework that combines labor-market frictions and

nominal frictions.12 The demand side is purposefully kept simple and analytically tractable.

Markets are incomplete: households can save but not borrow in a risk-free bond which is in

zero net supply.13 In consequence, higher unemployment risk increases savings and reduces

11To capture the general hump-shape in all response variables, and not only the delayed response of
job-finding rate, the model needs to expanded, e,g., to include habit formation.

12See also Den Haan et al. (2018), McKay and Reis (2021), Challe (2020) and Gornemann et al. (2021).
13The combination of no borrowing and zero supply of liquidity allows an analytical aggregation that

makes the equilibrium dynamics particularly transparent and easy to compute. These convenience assump-
tions were used in the context of asset pricing by Krusell et al. (2011) and has been used extensively in the
HANK literature since, see, e.g., Werning (2015); McKay and Reis (2021); Broer et al. (2020); Bilbiie (2020,
2021); Ravn and Sterk (2021). Acharya and Dogra (2020) use CARA utility to retain analytical tractability
with positive liquidity.

14



the demand for goods. On the supply side, firms employ workers in a Diamond-Mortensen-

Pissarides frictional labor market, and sell their output in a standard new-Keynesian en-

vironment with monopolistic competition and price-setting frictions. In this framework, a

fall in the demand for goods reduces the value of a filled job thus making both existing and

new matches less valuable. Firms are therefore more likely to fire existing workers, and less

likely to post vacancies, which implies less hiring. The framework thus contains a reinforc-

ing feedback loop from unemployment risk to, first, the demand for goods, and then the

demand for labor, and therefore back to unemployment risk. We label this feedback loop

the unemployment-risk channel.

Relative to previous studies of Heterogenous Agent New Keyenesian models with a

Search-And-Match labor market (HANK-SAM models), the distinguishing feature of our

model is the combination of endogenous rather than exogenous separations and sluggish

vacancy creation rather than free entry. In Section 5 we show how these two elements are

necessary to match the stylized facts of unemployment dynamics documented in Section

2, and that they are crucial when quantifying the importance of the unemployment-risk

channel.

3.1 Overview

The economy consists of infinitely-lived workers indexed by i ∈ [0, 1], and infinitely-lived

capitalists indexed by i ∈ (1, 1+ popc],with popc ≪ 1. The workers have CRRA preferences

with discount factor β and risk aversion σ. The capitalists are risk neutral with discount

factor β and own all firms. Production has three layers:

1. Intermediate-good producers hire labor in a frictional labor market with search and

matching frictions. Matches produce a homogeneous good sold in a perfectly compet-

itive market.

2. Wholesale firms buy intermediate goods and produce differentiated goods that they

sell in a market with monopolistic competition. The wholesale firms set their prices

subject to a Rotemberg adjustment cost.

3. Final-good firms buy goods from wholesale firms and bundle them in a final good,

which is sold in a perfectly competitive market.

We first describe the within-period timing in the model, then the determination of vacancy

posting and job separations in the frictional labor market, then the price-setting mechanism
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in the wholesale and final goods market, and finally the households’ consumption-saving

decisions.

3.2 Timing and labor-market dynamics

Step 0: Stocks and shocks. At the beginning of each period t, all aggregate shocks are

revealed. The endogenous state variables are the (beginning-of-period) stocks of unemployed

workers ut−1 and of vacancies vt−1.

Step 1: Separations and entry. Firms are exposed to an idiosyncratic continuation cost

shock. After observing the shock they decide whether to continue or exit, which implies an

endogenous, time-varying separation rate δt in a manner that we describe below. Vacancies

are destroyed with rate δss, which for simplicity we assume to be constant and exogenous,

and have the same value as the steady state separation rate. Firm-specific costs of entering

the labor market are realized. Firms that pay the cost post a new vacancy. The endogenous,

time-varying vacancy entry rate is denoted ιt. The resulting stocks of unemployment and

vacancies are given by

ũt = ut−1 + (1− ut−1)δt, (2)

ṽt = (1− δss)vt−1 + ιt. (3)

Step 2: Search and match. Unemployed workers and vacancies randomly match. The

matching technology is Cobb-Douglas with matching elasticity α. Denoting market tightness

by

θt =
ṽt
ũt

, (4)

the job-filling rate λv
t and job-finding rate λu

t are

λv
t = Aθ−α

t , (5)

λu
t = Aθ1−α

t . (6)

The labor-market stocks after matches are formed are

ut = (1− λu
t )ũt, (7)

vt = (1− λv
t )ṽt. (8)
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Step 3: Production. Production takes place. Dividends and wages are paid.

Step 4: Consumption and saving. All capitalists and workers, both employed and

unemployed, make their consumption-and-saving decisions.

3.3 Intermediate-good firms, vacancy creation and job separations

There is a continuum of intermediate-good firms producing a homogeneous good Xt sold in

a competitive market, owned by the capitalists. The real price of the intermediate good is

PX
t and one unit of labor produces Zt units of the intermediate good. The total production

of intermediate goods is thus given by

Xt = Zt(1− ut), (9)

where the log of total factor productivity Zt is subject to AR(1)-innovations νZ
t ,

Zt = Zssν
Z
t , (10)

log νZ
t = ρA log νZ

t−1 + Zt , (11)

where σZ is the standard deviation of Zt .

To hire labor the firms must post vacancies which are filled with probability λv
t , taken as

given by each one-worker firm. We denote by V v
t the value of a vacancy and by V j

t the value

of a match for the firm.

Separations. At the beginning of the period, a firm must pay a continuation cost χt ∼ G

or else the job match is destroyed.14 There is no additional heterogeneity and consequently

there exists a common cost cutoff χc,t = V j
t , such that for all χt > χc,t, the firm chooses

to separate. Accordingly, the Bellman equation for the value of a job after the separation

decision is

V j
t = PX

t Zt −Wt + βEt

 χc,t+1

(V j
t+1 − χt+1)dG(χt+1)


(12)

= Mt + βEt


(1− δt+1)V

j
t+1 − µt+1


,

14Following Mortensen and Pissarides (1994), separation decisions are typically modeled as a result of
idiosyncratic productivity shocks, such that low-productivity firms optimally decide to exit. Our simplified
assumptions have similar material consequences, but avoid ex-post heterogeneity in firm outcomes.
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where Wt is the real wage, δt+1 is the endogenous separation probability given by δt+1 =
∞
V j
t
G(χt)d(χt), µt+1 is the average cost paid, and Mt = PX

t Zt−Wt is the gross fundamental

surplus, following the terminology in Ljungqvist and Sargent (2017). In steady state we call

M̃ss = Mss − βµss the (net) fundamental surplus. Similarly, mt = (PX
t Zt − Wt)/(P

X
ssZss)

and m̃ss = M̃ss/(P
X
ssZss) are the gross and (net) fundamental surplus ratios.

The continuation-cost distribution G is a mixture of a point mass and a Pareto distribu-

tion with shape parameter ψ, location parameter Υ and mixture parameter p. We choose p

and Υ so that in steady state, job separations are δss and the continuation costs are approx-

imately zero, µss ≈ 0. See Appendix A.2 for details. Out of steady state, the endogenous

separation probability δt are then given by

δt = δss


V j
t

V j
ss

−ψ

, (13)

and the average continuation cost, µt, is a non-negative increasing function of the job value

µt = µ(V j
t ), µ(•) ≥ 0, µ′(•) ≥ 0. (14)

The idiosyncratic continuation cost implies that the elasticity of job separations to the value

of a job is ψ. In the special case where ψ = 0 separations occur exogenously at rate δss.

Vacancy creation. The Bellman equation for the value of a vacancy is given by

V v
t = −κ+ λv

tV
j
t + (1− λv

t )(1− δss)βEt[V
v
t+1], (15)

where κ is the flow cost of the vacancy, to be paid every period. Vacancies are not subject

to the stochastic continuation cost, and are instead destroyed with exogenous probability

δss. In contrast to the standard assumption of free entry to vacancy creation, we assume

that there is a constant mass F of prospective firms drawing a stochastic idiosyncratic entry

cost c following a distribution H.15 The prospective firm posts a vacancy if and only if the

value of a vacancy is larger than the entry cost. The total number of vacancies created is

therefore ιt = F ·H(V v
t ). Following Coles and Kelishomi (2018), the entry-cost distribution

has a cumulative distribution function H(c) = F · (c/h)ξ on c ∈ [0, h]. With the parameter h

sufficiently large so that h > V v
t , the resulting number of vacancies created is ιt = F ·(V v

t /h)
ξ.

15An alternative assumption that would also result in sluggish vacancy dynamics is convex vacancy posting
costs, as in Merz and Yashiv (2007).
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Expressing vacancy creation in relation to steady state gives us

ιt = ιss


V v
t

V v
ss

ξ

. (16)

The stochastic-cost entry assumption implies that the elasticity of vacancy creation to the

value of a vacancy is ξ. In the limit where ξ → ∞, we must have V v
t = V v

ss so that all entrants

pay the same deterministic entry cost. We set V v
ss = κ0 and treat κ0 as a free parameter.

The free entry model is the double limit ξ → ∞ and κ0 → 0, which implies V v
t = 0. To

facilitate comparisons with the free entry model we fix κ at a small positive value across

all calibrations, κ0 = 0.1. In Appendix A.4 we show that changing κ0 and ξ with the same

factor leaves our results unaffected.

Wage setting. With search frictions, an additional condition is required to determine

how the resulting match surplus is divided. In the baseline model, we follow Hall (2005) and

assume that real wages are fixed

Wt = Wss. (17)

A recent body of research has documented that downward nominal wage rigidity is pervasive

in the US labor market (Dupraz et al., 2021; Grigsby et al., 2021; Hazell and Taska, 2020). A

fixed real wage is therefore likely a weak assumption in the context of studying contractionary

shocks, as it implies more wage flexibility than a fully rigid nominal wage with pro-cyclical

inflation. As we show in Section 4, inflation is pro-cyclical both in response to demand and

supply shocks in our model.

3.4 The final-good sector and the wholesale sector

The representative final-good firm has the production function Yt =


k
Y

p−1

p

kt dk

 p
p−1

where

Ykt is the quantity of the input of wholesale firm k’s output used in production. The implied

demand curve is Ykt =


Pkt

Pt

−p
Yt where Pt =


k
P

1−p
kt dk

 1
1−p

is the aggregate price level.

There is a continuum of wholesale firms indexed by k ∈ [0, 1] producing differentiated goods

using the production function Ykt = Xkt where Xkt is the amount of the intermediate good

purchased by firm k at the intermediate-good price PX
t . The wholesale firms face Rotemberg

price adjustment costs, with scale factor φ. Since production is linear, the marginal cost of
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production is the input price PX
t . In a symmetric equilibrium, optimal price setting implies

a standard Rotemberg Phillips curve

1− p + p · PX
t = φ(Πt − 1)Πt − βφEt


(Πt+1 − Πss)Πt+1

Yt+1

Yt


, (18)

where Πt =
Pt

Pt−1
is the gross inflation rate. Total output given by

Yt = XtDt = (1− ut)ZtDt, (19)

where Dt =

k


Pkt

Pt

p
di is a measure of price dispersion.

3.5 Households

Households are of two types: workers and capitalists. Capitalists can buy and sell shares

in an equity fund that owns all firms, but do not participate in the labor market.16 All

adjustment costs are assumed to be virtual, meaning that fluctuations in profits are the

residual from fluctuations in output less of wage payments. Workers receive wage income Wt

if employed and home production income ϑ if unemployed, but cannot buy and sell equity.

All households can save in a zero-coupon one-period nominal bond, in zero net supply, which

can be purchased at the price 1/(1 + it), where it is the nominal interest rate, and face a

no-borrowing constraint.

Because of zero net supply of liquidity and no borrowing, the equilibrium interest rate

clears the bond market only if all households decide not to save, and the borrowing con-

straint must bind for all but one type of household.17 The model therefore admits analytical

aggregation. Specifically, as in Ravn and Sterk (2021), under the assumption that aggregate

shocks are small, the presence of idiosyncratic unemployment risk always gives the employed

workers the strongest motive to save, and in equilibrium, the interest rate must be consistent

with their Euler equation,

C−σ
n,t = βtEt


1 + it
Πt+1


(1− URISKt)C

−σ
n,t+1 +URISKtC

−σ
u,t+1


,

16The assumption that workers but not capitalists participate in the labor market can be rationalized by
means of a fixed labor-market participation cost, see Broer et al. (2020).

17Formally, any real interest rate low enough such that all three Euler equations are satisfied with weak
inequality is consistent with the zero-borrowing limit. The natural interpretation is however to let liquidity
approach zero, as in Krusell et al. (2011), then the real interest rate is such that one of the Euler equations
holds with equality.
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where Cn,t is the consumption of the employed, Cu,t is the consumption of the unemployed,

and URISKt = δt+1(1−λu
t+1) is the probability that an employed household is unemployed in

the next period. βt is the workers’ discount factor, which we assume is subject to mean-one

AR(1)-innovations νβ
t ,

βt = βνβ
t , (20)

log νβ
t = ρβ log ν

β
t−1 + βt , (21)

where σβ is the standard deviation of βt . Up to a first-order approximation, a positive shock

to the discount factor is isomorphic to a positive shock to the monetary policy rule.

The no-borrowing constraint implies that all households consume their income in equi-

librium. Together with the Euler equation for the employed households, this gives us the

following asset-market clearing condition,

W−σ
t = βtEt


1 + it
Πt+1


(1− URISKt)W

−σ
t+1 +URISKtϑ

−σ


(22)

where Rt = Et


1+it
Πt+1


is the gross real interest rate. In Appendix A.2, we formally specify

the consumption problems of the capitalists and workers, and derive Equation (22). Higher

unemployment risk results both in lower expected income (the first moment of the stochastic

income process) and higher income uncertainty (the higher moments) for the household. The

unemployment-risk channel includes both these effects.

3.6 Government

A government sets monetary policy according to the following Taylor rule,

1 + it = (1 + iss)Π
φπ−1
t Et[Πt+1]. (23)

All our numerical results are robust to using a standard Taylor rule which only responds

to current inflation, but the chosen rule allow us to prove a number of analytical results

on the propagation mechanism in Section 4. Appendix Figure A.14 shows that the impulse

responses are close to identical when the Taylor rule instead is 1 + it = (1 + iss)Π
φπ
t .
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3.7 Solution algorithm

Equations (2)-(23) describe a closed system of 22 equations in 22 unknowns. In the back-

ground, there are equations describing the evolution of profits and consumption of the capi-

talist, which are determined as residuals from the goods-market clearing condition.

We solve for a log-linear approximation around the steady state. Technically, we solve

for the perfect-foresight transition paths following unexpected MIT shocks to the household

discount factor, βt, (a “demand” shock) and TFP, Zt, (a “supply shock”), assuming that the

system eventually returns to steady state, exploiting that these transition paths, which are

computed without treating aggregate risk, are first-order approximations to the full rational-

expectations equilibrium for sufficiently small shocks (Boppart et al., 2018; Auclert et al.,

2021). For the baseline parameterization described in Section 5, we have verified that the

Blanchard-Kahn condition holds, meaning that the solution is unique.

4 The propagation mechanism

We now investigate the mechanism through which exogenous shocks propagate through the

model, and in particular the feedback loop generated by the unemployment-risk channel. In

Section 5, we quantitatively investigate this channel.

4.1 Impulse responses to supply and demand shocks

We consider a transitory shock to supply (TFP, Zt) or to demand (the discount factor of the

workers, βt, or, equivalently, a monetary policy shock). For illustration, Figure 6 shows the

impulse responses to these shocks, using the baseline calibration discussed in Section 5 (the

particular parameter values are not important here). We begin analyzing the TFP shock.

To guide the analysis of the propagation mechanism, consider the diagram in Figure

7, which shows the interaction between the key variables in a first-order approximation of

the equilibrium. The model is composed of a HANK block (left-hand side) and a SAM block

(right-hand side). Because the profits of intermediate-goods firms are consumed by capitalists

every period, the two blocks communicate only through two variables: unemployment risk,

URISKt and the labor revenue product PX
t Zt, which in turn consists of exogenous TFP and

the endogenous intermediate goods price. We now follow the unidirectional arrows through

the diagram to describe the propagation mechanism.18

18Formally, each “arrow” just represents an equation linking the path of one variable to the other, and
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(a) TFP, Zt (b) Discount factor, βt

(c) Unemployment rate, ut (d) Separation rate, δt (e) Job-finding rate, λu
t

(f) Vacancies, vt (g) Real interest rate, 1+it
Πt+1

(h) Inflation, Πt

Figure 6: Impulse responses to 1-std. supply and demand shocks.
Notes: This figure shows the impulse responses to both a 1-std. TFP-shock and a 1-std. discount factor
shock (with ρβ = 0.965 and σβ = 1.01

1
12 − 1.0). All other parameters are set as in Table A.3.

23



Real interest rate

{R real
t }

Unemployment (risk)

{ut , ωt ,εu
t }

Goverment

bonds

{Bt}

Household

savings

{Ahh
t }

Inflation

{!t}
Labor revenue product

{pxt Zt}
Tightness

{ϑt}

tax

fiscal rule

income process
matching

function
separations

phillips curve

taylor rule

separations + entry

asset

market

clearing

HANK-block

SAM-block

Figure 7: Graphical representation of the model equations.

Starting in the SAM block, a reduction in TFP implies a lower net present value of

match surpluses and therefore a spike in separations and a decline in entry. The increase

in separations raises unemployment risk directly. The increase in separations, alongside

the fall in entry, also leads to a decline in tightness, which leads to a decline in the job-

finding rate through the matching function, further raising unemployment risk. In a model

with infinitely elastic vacancy creation (as in the standard free-entry model), the effect

of separations on tightness would be undone by a corresponding increase in entry. With

finitely elastic vacancy creation, the offsetting entry effect is only partial, such that the

newly separated households instead deplete the current vacancy stock, causing a persistent

hump-shaped decline in tightness and the job-finding rate, as seen in Figure 6.19 The muted

response of vacancy creation also implies that the vacancy stock is pro-cyclical, consistent

with the notion of a Beveridge curve.

In the HANK block, an increase in unemployment risk causes desired savings to increase

and goods demand to fall. To clear the asset market, the real interest rate must fall, as seen

from Equation (22). To be consistent with the monetary policy rule (23), a path of lower

real interest rates must be accompanied with a path of lower inflation rates. The Phillips

curve (18) stipulates that a path of lower inflation rates must be accompanied by a path of

lower real marginal cost, which in our setup equals the intermediate goods price.20 A path

of lower intermediate goods prices lowers the net present value of match surpluses, which

sets in motion an additional cycle of separations and decline in entry. These generate an

the choice of direction is therefore arbitrary, and here only made in terms of interpretation.
19To get a hump shape in separations, a model with more “bells and whistles” such as habit formation

or sticky expectations is needed, see, e.g., Auclert et al. (2020).
20In the Phillips curve (18), the growth path of output also enters and affects the determination of

the intermediate goods price, but this effect is zero up to a first order approximation and quantitatively
unimportant for our results.
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(a) Intermediary goods price, PX
t (b) Unemployment risk, URISKt (c) Unemployment, ut

Figure 8: Multiplier process from 1-std. TFP.
Notes: This figure shows the multiplier process leading to the full impulse-response to a 1 std. TFP shock.
All parameters are set as in Table A.3.

additional response of unemployment risk, which through the cycle generates yet another

response of separations and entry.

In Figure 8, we unpack this multiplier process by solving the model iteratively in response

to a TFP shock, again using our preferred calibration, explained in Section 5. Initially we

keep the intermediary goods price fixed, PX
t , and solve the model equations of the SAM

block. This implies a path for unemployment risk, URISKt. Next, we solve the equations

of the HANK block given this path, which implies a new path for the intermediary goods

price, PX
t . We then repeat this process until the input and output intermediary goods price

paths coincide.

4.2 The unemployment risk channel

In Proposition 1, we characterize the HANK block analytically and show how it is summa-

rized by one single sufficient statistic, which is possible due to the zero-liquidity assumption

underlying the Euler equation (22). In what follows, let xt and x̂t denote the log and the log

deviation from steady state of any capital variable Xt.

Proposition 1. To a first-order approximation, the HANK block is explicitly described by

pxt = −Ω(uriskt − βEt
uriskt+1), (24)
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where

Ω =

URISKss ×


Wss

ϑ

σ − 1


1 + URISKss ×


Wss

ϑ

σ − 1


  
fear of unemployment

(p − 1)φ−1

  
pricing frictions

(φπ − 1)  
monetary policy

. (25)

Proof. See Appendix A.3.

The sufficient statistic Ω encapsulates the unemployment channel that is determined

by households’ fear of unemployment (combining the risk-aversion parameter, the drop in

consumption upon unemployment, and the unemployment risk), the conduct of monetary

policy, and the pricing frictions. Changing any one of the parameters governing these has

the same effect on the labor-market dynamics.

We can compare Equation (25) to an alternative version with complete markets, where

all workers are part of a large family that pools all income, implying identical consumption

equal to average worker income Wt(1 − ut) + ϑut. The real interest rate is proportional

to the growth rate of average labor income, and, with Wt = Wss, to a first order equal to

rt = −σ uss(Wss−ϕ)
1−uss(Wss−ϕ)

∆ut+1 where ut is the log deviation of the unemployment rate from steady

state. Given the otherwise unchanged nature of the environment, in particular the identical

labor market equilibrium for any given path of the intermediate-goods price, derivations

identical to those above yield a condition for the intermediate-goods price,

pxt = −ΩRA(∆ut+1 − β∆ut+2) (26)

with

ΩRA =

σ
uss(Wss − ϕ)

1− uss(Wss − ϕ)  
intertemporal substitution

(p − 1)φ−1

  
pricing frictions

(φπ − 1)  
monetary policy

. (27)

The unemployment-risk channel is the difference between the equilibrium dynamics induced

by Equations (24) and (26). In the model with incomplete markets, an increase in unemploy-

ment risk, either through an increase in separation or a decline in the job-finding rate, reduces

the real interest rate, inflation, and the intermediate goods price by inducing precautionary

savings among the households. The equilibrium fall in the intermediate goods price explains
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why the unemployment response is amplified to a contractionary TFP shock, as evident in

Figure 3. With complete insurance markets, in contrast, separation and job-finding rates

only play a role for the equilibrium response of interest rates and intermediate goods prices

insofar as they affect the growth rate of unemployment. In such a model, the unemployment

response is dampened to contractionary TFP shock. The initial increase in unemployment

thereby instead causes the real interest rate to increase through intertemporal substitution,

leading to an increased intermediate-goods price.

4.3 Equivalence of supply and demand shocks

So far, the discussion of the impulse responses in Figure 6 has focused on the supply shock

to aggregate productivity Zt (in black). The responses of key model variables to a demand

shock (to the discount factor of the workers, βt, in blue ) are similar up to a scaling factor.

This is no coincidence: a demand shock acts as a shock to pxt in Equation (24) with the

same effect on labor revenue product pxt + zt as a shock to productivity zt. As a result, the

labor market dynamics in response to supply and demand shocks are equivalent. This is

summarized in Proposition 2.

Proposition 2. To a first-order approximation, the impulse responses for labor-market vari-

ables to a shock to TFP (supply) and to the discount factor of workers (demand) are equiv-

alent up to a scaling factor.

Proof. See Appendix A.3.

The fact that the dynamics of unemployment risk behave similarly in response to both

supply and demand shocks in our model is reassuring since, in the data, the dynamics of

unemployment risk looked similar both in response to identified supply and demand shocks.

This feature contrasts with simple textbook versions of the new-Keynesian model, see, e.g.,

Gaĺı (1999), which predicts that labor inputs fall in response to a negative demand shock,

but rise in response to a negative technology shock. The latter feature of the textbook model

is primarily an effect of having a frictionless labor market together with a particular choice

of parameters. In the textbook model, to accommodate the initial fall and subsequent rise in

consumption implied by a negative technology shock, the real interest rate has to rise. With

a standard Taylor rule, inflation must increase. With nominal frictions, real marginal cost

must be higher compared to the flexible-price equilibrium, implying an increase in wages,

which, in the frictionless labor market, implies that labor supply increases relative to the
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flexible-price equilibrium. Combined with balanced-growth path preferences implying that

hours worked is constant in response to technology shocks in the flexible-price equilibrium,

the textbook model produces an increase in hours worked in response to a negative technology

shock.

In models like ours, with a frictional labor market and where labor inputs are directly

determined by firms’ labor demand, hours worked fall in response to a negative productivity

shock. This is also true without incomplete markets and pricing frictions, see, e.g., Balleer

(2012). Moreover, in a model with incomplete markets, an increase in unemployment risk

strengthens the precautionary-savings motive, which puts downward pressure on the market-

clearing interest rate. In our model, where the ability of households to smooth unemployment

risk is absent in equilibrium, this force is sufficiently strong such that the equilibrium real

interest rate falls (in contrast to the textbook new-Keynesian model), which amplifies the

contraction in hours worked.

5 Quantitative analysis

We first describe how the elasticities of separation and vacancy creation, alongside the steady-

state wage level, are identified from the stylized facts about unemployment-risk dynamics in

the data. Second, we study the implications of matching these facts for the contribution of

the unemployment-risk channel to fluctuations in unemployment. Throughout this section,

we calibrate to and study responses to a TFP shock that follows a standard AR(1) process

with persistence ρA = 0.965 and standard deviation, σA = 0.007.21 Apart from the separation

elasticity (ψ), entry elasticity (ξ), and the wage level (Wss), we set all parameters to typical

values found in the literature, or to capture standard long-run data moments in the model’s

steady state. See Table A.3 in Appendix A.4 for details.

5.1 The role of endogenous separations and sluggish vacancy cre-

ation for matching unemployment-risk dynamics

To capture the stylized facts documented in Section 2, the contribution of separations to un-

employment fluctuations and the lead-lag relation between separation and job-finding rates,

our model features endogenous separations and sluggish vacancy posting. Quantitatively,

21We could just as well have worked with a demand shock: the facts regarding unemployment risk
dynamics were very similar for identified supply and demand shocks in the data, and the responses to both
shocks are identical up to a scaling factor in our model as per Proposition 2.
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these features are governed, respectively, by the separation elasticity (ψ) and entry elasticity

(ξ). To understand how they together allow the model to capture the stylized facts, note

that both amplify the response of unemployment to a contractionary productivity (or other)

shock, but in fundamentally different ways. A higher separation elasticity trivially amplifies

the increase in separations. With sluggish vacancy posting the resulting increase in unem-

ployment also depresses the job-finding rate, as more workers search for vacancies that are

replenished only slowly. In comparison, a lower entry elasticity hardly affects the separation

rate. Vacancies fall by less in response to the shock, but also recover less quickly when an

increasing number of unemployed workers in search for a job makes vacancy posting more

attractive for firms. Taken together, this describes what Coles and Kelishomi (2018) have

dubbed the vacancy-depletion channel. As a result, the responses of the job-finding rate

and unemployment are more backloaded, increasing their lag with respect to the separation

response. For a given values of the elasticities, we can choose the real wage Wss and thus

the gross fundamental surplus ratio, mss = Px
ssZss−Wss

Px
ssZss

to target the overall size of the un-

employment response. The gross fundamental surplus ratio is a key determinant of total

unemployment volatility in this class of search-of-matching models (Ljungqvist and Sargent,

2017).

Panel a) and b) of Figure 9 illustrate the contrasting effects of the two elasticities on

the dynamics of unemployment risk when recalibrating the wage level (Wss) to match the

standard deviation of the unconditional unemployment time series documented in Section 2,

equal to 2.65 percentage point. The horizontal lines correspond to two calibration targets

that capture the stylized facts in response to productivity shocks: a share of the unemploy-

ment variance accounted for by movements in the separation rate equal to 40 percent (in

panel (a)); and a relative delay of the peak response of the job-finding rate of 9 months

(in panel (b)). Across the different settings, we documented that separations account for

40-58 percent of fluctuations in unemployment and that the separation rate leads the job-

finding rate by 6-16 months, meaning that these target numbers are conservatively selected.

Trivially, the canonical free entry model with exogenous separations (corresponding to the

parameter combination ψ = 0.0 and ξ = 100.0) misses these targets by a large margin.

When allowing for endogenous separations and sluggish vacancy posting, the two targets

together identify the corresponding two elasticities: a higher separation elasticity increases

the share of var(ut) explained by separations in panel (a) of Figure 9. But for values of

the separation elasticity ψ consistent with a substantial such share it leaves the lead-lag

relation with the job-finding rate in panel (b) largely unaffected. That lead-lag relationship,
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in contrast, is strongly increased at lower values of the entry elasticity ξ. Because both a

higher separation elasticity and a lower entry elasticity amplify the unemployment response

in the vicinity of our preferred calibration, they imply a higher fundamental surplus share

in panel (c) to match targeted unemployment volatility. Interestingly, this is not true for

close-to-exogenous separations: because vacancy posting is the only transmission channel in

that case, more sluggish vacancy posting dampens the unemployment response, implying a

lower surplus ratio, as illustrated by the crossing of the lines in panel (c).

Given these contrasting effects of the three key parameters on labor-market dynamics,

the stylized facts identify ξ = 0.05, ψ = 1 (indicated by the vertical line in panels (a) to

(c)) and a gross fundamental surplus ratio of approximately 14 percent, which, reflecting

the additional sources of amplification in our model, is larger than in standard search-and-

matching models (Ljungqvist and Sargent, 2017).

5.2 The effect of endogenous separations and sluggish vacancy

creation on the unemployment-risk channel

We now turn to investigate how accounting for endogenous separations and sluggish vacancy

posting affects the contribution of the URC to business-cycle fluctuations. Recall that we

defined the URC as the difference in the response of unemployment between the baseline

model and the corresponding model with complete asset markets (where all workers consume

average labor income, see Section 4). The URC consequently captures all fluctuations in un-

employment caused by the interaction of idiosyncratic unemployment risk and sticky prices.

Figure 10 compares the dynamic response of unemployment to a productivity shock in these

two models, and the shaded area captures the URC. In our model, the URC accounts for 35

percent of the unemployment variance. The share generated by the URC in our model does

not depend specifically on the TFP shock since supply and demand shocks have equivalent

effects on the labor market. In Appendix Figure A.16, we verify that the URC also accounts

for 35 percent of the unemployment variance in response to a demand shock to the discount

factor, βt.

Figure 11 shows how the quantitative importance of the URC for unemployment fluc-

tuations varies with the choice of the separation elasticity (ψ) and the entry elasticity (ξ),

when we re-calibrate the fundamental surplus ratio to keep the overall unemployment vari-

ance fixed. The figure presents a key result of our analysis: in a model with exogenous

separations and free entry, the URC only accounts for 20 percent of unemployment fluctua-
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(a) Share of var(ut) explained by separations (b) Delay of job-finding through to separation peak

(c) Gross fundamental surplus ratio,
Px

ssZss−Wss

Px
ssZss

Figure 9: Identification of separation elasticity (ψ) and entry elasticity (ξ).
Notes: This figure shows model outcomes to identify the separation elasticity, ψ, and the entry elasticity, ξ,
while re-calibrating the gross fundamental surplus ratio, m̃ss, to fit a variance of unemployment of 2.65 (as
found in Section 2). All other parameters are set as in Table A.3. Panel (a) shows the share of the variance
of unemployment accounted for by separations using the static decomposition from Section 2. Panel (b)
shows the delay from the separation rate peak to the job-finding rate trough to in months. The horizontal
lines show the targeted moment values, and the vertical lines the chosen parameter values in our preferred

calibration. Panel (c) shows the implied gross fundamental surplus ratio m̃ss =
Px

ssZss−Wss

Px
ssZss

.
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Figure 10: Decomposition of the unemployment response to a 1-std. TFP shock.
Notes: This figure shows a decomposition of the unemployment response in the baseline model to a 1-std.
TFP shock. The Unemployment Risk Channel (URC) is the difference between the full response and the
response with complete markets in percent of the full response.

tions. When capturing the stylized facts of unemployment fluctuations through endogenous

separations and sluggish vacancies, this contribution increases to 35 percent.

Figure 11 also shows that it is the endogeneity of separations that accounts for this

result. Making vacancies more sluggish by reducing the elasticity of vacancy creation actually

dampens the contribution of the URC, despite the fact that it amplifies the total response

of unemployment, as shown above. Two forces pull in opposite direction in terms of shaping

the dynamic path of unemployment risk that household face. With a larger share of the

unemployment response generated by an increase in separations, households face more near-

term income risk. With a larger share generated by a reduction in the job-finding rate,

households face instead a higher risk of longer unemployment spells. Moreover, with vacancy

creation being sluggish, this increase in duration risk becomes more back-loaded in time.

With incomplete insurance against a potentially binding credit constraint, near-term income

risk has a larger impact on employed households consumption-savings decisions relative to

long-term income risk.

In our model, calibrated at a monthly frequency, the credit constraint is expected to

bind for all employed households within one month, which is of course extreme. Typical

calibrations of incomplete-markets model with positive liquidity will share the feature that

the credit constraint eventually binds for most households, but also generate substantial

heterogeneity in how long time that actually takes, and that it varies by households’ current

liquidity position, see, e.g., Kaplan and Violante (2018). Understanding how the distribution
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Figure 11: Unemployment Risk Channel
Notes: This figure shows the contribution of the Unemployment Risk Channel (URC) to the total response
of unemployment across different values of the separation elasticity (ψ) and entry elasticity (ξ). The gross
fundamental surplus ratio, m̃ss, is re-estimated to fit the observed variance of unemployment, var(ut). The
URC is the difference between the full response and the response with complete markets in percent of the
full response. The dashed axes indicate the baseline calibration.

of households’ liquidity position and its correlation with perceived unemployment risk matter

for the strength of the URC is an important topic for future work.

5.3 Robustness

In Appendix A.4 we provide several robustness checks, documenting how the addition of

endogenous separations and sluggish vacancy creations affects the contribution of the URC

when varying other model parameters. On top of this, we explore two changes of the model

here.

In the baseline model, we assumed that real wages are constant, in line with Hall (2005)

and a large literature that has documented the rigidness of wage setting decisions. In the
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left panel of Figure 12, we show how the contribution of URC is affected when assuming

that wages can respond to fluctuations instead. Specifically, we assume here that all wages

respond to fluctuations in productivity with a unitary elasticity, in line with the estimates

in Pissarides (2009). We recalibrate the wage level, the entry elasticity and the separations

elasticity to match the same dynamic moments in response to the TFP shocks as with

the baseline model. Just as in the baseline model, the contribution of the URC increases

with the separation and the entry elasticity. When wages are flexible, however, the URC

explains a larger share of the total response of unemployment. As shown in Equation (25),

the size of the URC is determined by the ratio of consumption between the employed and

unemployed. With wage flexibility, this ratio becomes larger in booms, and smaller in

recessions, amplifying this channel.

In the baseline model, we also assumed that profits are distributed to a hand-to-mouth

capitalist, in line with with Ravn and Sterk (2021). In the right panel of Figure 12, we show

how the contribution of URC is affected when assuming that profits are equally and lump-

sum distributed to all the workers. Note that in this case, the URC not only depends on the

consumption gap between the employed and unemployed, but also the intertemporal sub-

stitution induced by cyclical fluctations in profit income. We similarly recalibrate the wage

level, the entry elasticity and the separations elasticity to match the same dynamic moments

in response to the TFP shocks as with the baseline model. Just as in the baseline model,

the contribution of the URC increases with the separation and the entry elasticity (except

for very small values of the entry elasticity). When profits are equally distributed, however,

the URC explains a larger share of the total response of unemployment. This is because

full profit sharing dampen the output response with complete asset markets: procyclical

fluctuations in profits increases the procyclicality of consumption, which, in turn, increases

the countercyclical response of the interest rate and inflation, which, in turn, dampen the

response of the labor revenue product.

6 Conclusion

The unemployment-risk channel is quantitatively important for business-cycle fluctuations

in unemployment, accounting for over a third of unemployment volatility. This quantitative

assessment rests on an evaluation of two key labor-market elasticities: the sensitivity of job

separations and vacancies to economic conditions. We identify these elasticities by jointly

matching two stylized facts that we document: in response to both supply and demand
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(a) Flexible wages (b) Equally distributed profits

Figure 12: The unemployment-risk channel in two alternative models
Notes: This figure shows the contribution of the Unemployment Risk Channel (URC) to the total response
of unemployment across different values of the separation elasticity (ψ) and entry elasticity (ξ). The gross
fundamental surplus ratio, m̃ss, is recalibrated to fit the observed variance of unemployment, var(ut), without
recalibrating the separation and entry elasticities. The URC is the difference between the full response and
the response with complete markets in percent of the full response. The dashed axes indicate the preferred
calibration. In the case of flexible wages, the preferred calibration matches the target moments exactly.
In the case of equally distributed profits, the preferred calibration slightly underestimates the share of
unemployment variance explained by separations (36 percent, compared to a target of 40 percent).

shocks, (i) the job-separation rate and the job-finding rate account for substantial shares of

unemployment fluctuations, and (ii) the job-finding rate responds with a lag relative to the

job-separation rate. The implied job-separation and vacancy-creation elasticities needed to

match these facts are strictly positive and finite. Further, the details of the labor-market

dynamics matter for the assessment of the importance of the unemployment-risk channel. A

correspondingly calibrated standard Diamond-Mortensen-Pissarides model, which implicitly

sets the job-separation elasticity to zero and the vacancy-creation elasticity to infinity, only

attributes 20 percent of unemployment volatility to the unemployment-risk channel.

Our analysis builds on a tractable framework, where we have purposefully kept some

parts of the model simple and stylized. This enabled a transparent analysis of the role of

endogenous separations and sluggish vacancy creation for the unemployment-risk channel.

Some of the maintained assumptions are, however, restrictive and we believe it would be

useful to investigate the effect of relaxing them in future work, especially for policy analysis.

First, the no-borrowing/zero-liquidity assumptions imply that workers have no ability to

smooth income fluctuations in our framework. While the compressed asset distribution is

in line with small liquid-asset holdings by most workers, and the consumption drop upon
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unemployment in the model matches that in the data, the relative role of separation risk vis-

à-vis unemployment duration risk for fluctuations in consumption demand might be affected

by this assumption.

Second, our modeling of the response of separations to macroeconomic conditions was

intentionally simple, and thus does not capture the persistent heterogeneity in match produc-

tivity that likely drives separation decisions in the data. This means that our framework does

not fully capture the costs and benefits of demand stabilization through its effect on the allo-

cation of workers to firms. Future research should build, e.g., on the evidence in Haltiwanger

et al. (2025) who document how labor-market cycles contribute to productivity-enhancing

reallocation of workers, as separations in recessions are concentrated among low-productivity

firms, while the job ladder reallocates workers to higher-productivity firms in booms. Sim-

ilarly, the assumption of heterogenous costs of creating a vacancy follows previous work

(Coles and Kelishomi, 2018; Haefke and Reiter, 2020), but does not allow us to quantita-

tively capture the heterogeneity of firm or job productivity, and their correlation with entry

and exit decisions. An interesting avenue for future research includes enriching the labor

market block with, e.g., recall unemployment, job-to-job transitions, endogenous search and

recruitment intensities, and a distinction between separations and job destruction.

Third, we have assumed that all households are equally exposed to unemployment risk.

To the extent that poorer individuals in terms of wealth (and thus self-insurance) are more

exposed to unemployment risk (as documented in Clymo et al. (2022)), this heterogeneity

could amplify the unemployment-risk channel. To the extent that poorer individuals (in

terms of permanent income) are more exposed to unemployment risk (as documented in

Broer et al. (2022)), this heterogeneity could, in contrast, dampen the channel, as they

matter relatively less for aggregate consumption. Future research should investigate how

incorporating heterogeneity in the exposure to unemployment risk affects the quantification

of the unemployment-risk channel.

A Appendix

A.1 Appendix to Section 2

A.1.1 Accounting for time aggregation

To account for time aggregation, we analyze the data through the lens of a three state

continuous time model, where workers are either employed (E), unemployed (U) or inactive
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(I), i.e. out of the labor force.

Let Pt denote the discrete time transition probability matrix from month t to month t+1.

This can be calculated directly from the data. We use seasonally adjusted probabilities.

Let PAB
t denote the transition probability from state A ∈ {E,U, I} to stateB ∈ {E,U, I}.

The implied transition rate matrix, also known as the infinitesimal generator matrix, is given

by22

Qt =




−(λEU

t + λEI
t ) λEU

t λEI
t

λUE
t −(λUE

t + λUI
t ) λUI

t

λIE
t λIU

t −(λIE
t + λIU

t )





= pt




ln(µt1) 0 0

0 ln(µt2) 0

0 0 ln(µt3)



 p−1
t ,

where µt1, µt2 and µt3 are the eigenvalues of Pt, and pt is the associated eigenvector matrix.

We can thus derive PAB
t , and the underlying continuous time transition rates, from Pt alone.

We calculate the probability of at least one transition in a month from state A to state

B, conditional on no transitions to the third state C, as ΛAB
t = 1− e−λAB

t . For simplicity, we

refer to this both as the monthly transition probability, and as the monthly transition rate.

A.1.2 Robustness of estimated impulse responses

Figure A.1 shows the estimated impulse responses to a technology shock, using the identified

shocks from Francis et al. (2014) (retrieved from Valerie Ramey’s website). The specification

is the same as for the IRFs in the main text. Figure A.2 shows the variance decomposition

and lead-lag relationship between the separation rate and the job-finding rate based on

these IRFs. With these shocks, we find that the separation rate accounts for 42 percent of

fluctuations in unemployment, and leads the job-finding rate by 6 months.

Table A.1 shows how the results for the estimated TFP shock varies across specifica-

tions using different sets of control variables. Figures A.3-A.5 show the associated impulse-

response functions. The control variables have overall a small effect on the share of the

unemployment response explained by the separation rate as well as the lead-lag relationship

between the separation rate and the job-finding rate.

Table A.2 shows how the results for the monetary policy shock vary across specifica-

22We assume the eigenvalues of Pt are unique, real and positive. This is true in the data.
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Figure A.1: Responses to a TFP shock using the shock series from Francis et al. (2014).

(a) Variance decomposition (b) Lead-lag relationship

Figure A.2: Variance decomposition of unemployment and lead-lag of the transition rates to
a TFP shock, using the shock series from Francis et al. (2014).
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Baseline Spec 1 Spec 2 Spec 3

UE share (percent) 47 53 47 47
UE lead (months) 9 12 9 9
Controls
Quad. time trend x x x x
Two lags of the shock x x x x
Two lags of log real GDP x x x
Two lags of log real stock prices x x
Two lags of log real labor productivity x

Table A.1: Results for TFP shock across different specifications.

Figure A.3: Responses to a TFP shock controlling for a quadratic time trend and two lags
the shock.
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Figure A.4: Responses to a TFP shock controlling for a quadratic time trend, two lags the
shock and two lags of log real GDP.
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Figure A.5: Responses to a TFP shock controlling for a quadratic time trend, two lags the
shock, two lags of log real GDP and and two lags of real stock prices.
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Baseline Spec 1 Spec 2 Spec 3 Spec 4

UE share (percent) 59 57 54 51 51
UE lead (months) 16 11 14 15 17
Controls
Two lags of the shock x x x x x
Two lags of the FFR x x x x x
Contemp + two lags of log ind. prod. x x x x
Contemp + two lags of log PC deflator x x x
Contemp + two lags of log comm. price index x x
Contemp + two lags of unemployment rate x

Table A.2: Results for monetary policy shock across different specifications.

tions using different sets of control variables. Figures A.6-A.9 show the associated impulse-

response functions. The control variables have overall a small effect on the share of the

unemployment response explained by the separation rate as well as the lead-lag relationship

between the separation rate and the job-finding rate.

A.1.3 Filtering methods and sample periods

Figure A.10 shows the time series of unemployment using different filtering methods. Fujita

and Ramey (2009) use a two-sided Hodrick-Prescott filter with λ = 1600; Shimer (2012) uses

a two-sided Hodrick-Prescott filter with λ = 105 (here, we adjust these values to monthly

data by multiplying by 34). As seen from Figure A.10, two-sided Hodrick-Prescott filters

tend to attribute a larger share of the Great Recession to the trend rather than the cycle

component, and also do not filter out erratic short-term movements in the unemployment

rate. The one-sided filter attributes a larger share of the slow recovery after the Great

Recession to the trend. A linear filter closely tracks the Christiano-Fitzgerald bandpass

filter used for the specification in the main text.

Figure A.11 shows the variance decomposition of the time series of unemployment using

different filtering methods. With all the alternative filters, the resulting time series are more

erratic, as high-frequency fluctuations are not filtered out. The variance explained by the

separation rate varies from 38 to 50 percent. Figure A.12 shows the correlation structure of

the time series of unemployment using different filtering methods. With all the alternative

filters, the resulting time series are more erratic, as high-frequency fluctuations are not

filtered out. The peak in the correlation between the job-finding rate at time t and the

separation rate at time t-h varies between 4 and 6 months.
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Figure A.6: Responses to a monetary policy shock controlling for two lags of the shock, and
two lags of the FFR.
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Figure A.7: Responses to a monetary policy shock controlling for two lags of the shock, two
lags of the FFR and the contemporaneous value as well as two lags of log ind. production.
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Figure A.8: Responses to a monetary policy shock controlling for two lags of the shock, two
lags of the FFR and the contemporaneous value as well as two lags of log ind. production,
log PC deflator and log comm. price index.
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Figure A.9: Responses to a monetary policy shock controlling for two lags of the shock, two
lags of the FFR and the contemporaneous value as well as two lags of log ind. production
and log PC deflator.

46



Figure A.10: Detrended unemployment using different filters

Figure A.12 shows the variance decomposition and the correlation structure when re-

stricting to the sample starting 1987-01 and ending 2019-12. The variance share explained

by the separation rate is here 28 percent, and the peak correlation between the job-finding

and the separation rate happens when the former leads the latter with 9 months.

A.2 Appendix to Section 3

A.2.1 Separation decision

In Equation 12, we assume that G is a mixture of a point mass at 0 and a Pareto distribution

with location parameter Υ > 0 and shape parameter ψ,

G(χt) =






0 χt < 0,

1− p 0 ≤ χt < Υ,

(1− p) + p(1− (χt/Υ)−ψ) χt ≥ Υ,

(28)
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(a) Two-sided HP-filter, λ = 1600 · 34 (b) Two-sided HP-filter, λ = 105 ∗ 34

(c) One-sided HP-filter, λ = 1600 ∗ 34 (d) Linear filter

Figure A.11: Variance decomposition of unemployment with different filtering methods.
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(a) Two-sided HP-filter, λ = 1600 ∗ 34 (b) Two-sided HP-filter, λ = 105 ∗ 34

(c) One-sided HP-filter, λ = 1600 ∗ 34 (d) Linear filter

Figure A.12: Correlation structure of the EU and UE rate with different filtering methods.

(a) Variance decomposition (b) Variance decomposition

Figure A.13: Variance decomposition of unemployment and lead-lag of the transition rates
in the post-1987 sample period.
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This implies

δt =

 ∞

V j
t

G(χt)d(χt) (29)

=





p if V j

t ≤ Υ

p


V j
t

Υ

−ψ

else

and

µt =

 V j
t

0

χtdG(χt) (30)

=
E[χt]− Prob.[χt > V j

t ]E[χt|χt > V j
t ]

1− Prob.[χt > V j
t ]

=






0 if V k
t ≤ Υ

p ψΥ
ψ−1

−p


V
j
t
Υ

−ψ
ψV

j
t

ψ−1

(1−p)+p(1−(χt/Υ)−ψ)
else

=






0 if V k
t ≤ Υ

p ψ
ψ−1

Υ


1−


V
j
t
Υ

1−ψ


1−p


V
j
t
Υ

−ψ else

= µ(V j
t )

We always choose Υ =


δss
p

 1
ψ
V j
ss which implies Equation (13) in the main text. Further-

more, with p = δss we have Υ = V j
ss which implies δt = δss when V j

t ≤ V j
ss. Instead we set

p = (1+∆δ)δss where ∆δ > 0 is a small positive number. This implies that δt can rise above

δss when V j
t falls below V j

ss. It also implies that µss is a small positive number.

A.2.2 Asset market equilibrium

Workers’ optimization problem The post-decision value function for the employed

worker is

Wn
t = Et


(1− URISKt)V

n
t+1 +URISKtV

u
t+1
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where URISKt = δt+1(1 − λu
t+1) is the probability of an employed worker becoming unem-

ployed. The Bellman equation for an employed worker is

V n
t = max

Cn,t,Bn,t+1

C1−σ
n,t

1− σ
+ βWn

t (31)

s.t.

Cn,t +
Bn,t+1

1 + it
≤ Wt +

Bn,t

Πt

,

Bn,t+1 ≥ 0.

where Bn,t are bond holdings. In the zero-liquidity equilibrium, the sum of all agents’ asset

holdings is zero. Together with assumption that no agent is allowed to borrow, it follows

that all individual agents’ asseting holdings must be zero. Hence, Bn,t = Bn,t+1 = 0, and all

employed workers are symmetrical such that Cn,t = Wt.

The post-decision value function for the unemployed worker is

Wu
t = Et


λu
t+1V

n
t+1 + (1− λu

t+1)V
u
t+1


.

The Bellman equation for an unemployed worker is

V u
t = max

Cn,t,Bn,t+1

C1−σ
u,t

1− σ
+ βWu

t (32)

s.t.

Cu,t +
Bu,t+1

1 + it
≤ ϑ+

Bu,t

Πt

,

Bu,t+1 ≥ 0.

In the zero-liquidity equilibrium, Bu,t = Bu,t+1 = 0, and all unemployed workers are sym-

metrical such that Cu,t = ϑ.
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Capitalists’ optimization problem The Bellman equation for the capitalists, who do

not participate in the labor market, is

V c
t = max

Cn,t,Bn,t+1

Cc,t + βEt[V
c
t+1] (33)

s.t.

Cc,t +
Bc,t+1

1 + it
+ P S

t St ≤ ϑ+
Bc,t

Πt

+ (P s
t +Dt)St−1,

Cc,t ≥ 0, (34)

Bc,t+1 ≥ 0, (35)

St ≥ 0,

where Bc,t are bonds, St are equity fund shares. The equity fund owns all firms in the

economy, and pays out the firm profits as Dt.

In the zero liquidity equilibrium, Bc,t = Bc,t+1 = 0, and with all capitalists symmetrical,

St = St+1 =
1

popc
. Consumption of the capitalists is given by

Cc,t =
Dt

popc

+ ϑ.

Since capitalists have linear utility, the discount factor that enter the firm problems is simply

β.

Asset market equilibrium Optimality requires that the three Euler equations of the

three types of agents are satisfied with weak inequality,

W−σ
t ≥ βEt


1 + it
Πt+1


(1− URISKt)W

−σ
t+1 +URISKu,tϑ

−σ


, (36)

ϑ−σ ≥ βEt


1 + it
Πt+1


λu
t+1W

−σ
t+1 + (1− λu

t+1)ϑ
−σ


, (37)

1 ≥ βEt


1 + it
Πt+1


. (38)

Formally, any real interest rate (1 + it)/Πt+1 low enough such that all three Euler equations

are satisfied with weak inequality is consistent with the zero-liquidity equilibrium. The

natural interpretation is however to let liquidity approach zero, as in Krusell et al. (2011),

then the real interest rate is such that one of the Euler equations holds with equality.
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At a zero-inflation steady state, the three Euler equations amount to

1 ≥ β(1 + iss), (39)

1 ≥ β(1 + iss) (1 + URISKss((Wss/ϑ)
σ − 1)) , (40)

1 ≥ β(1 + iss)

1− λu

ss(1− (Wss/ϑ)
−σ)


. (41)

With the transition rates strictly positive, and the wage of the employed larger than the home

production of the unemployed, Wss > ϑ, we get the inequalities 1+URISKt((Wss/ϑ)
σ−1) >

1 > 1−λu
ss(1− (Wss/ϑ)

−σ) and the marginal saver is the employed worker. For small enough

aggregate shocks, around the zero-inflation steady state, the employed worker remains the

marginal saver and Equation (22) is the asset-marking clearing condition.

A.2.3 Solution algorithm

First, we solve for the steady state in 3 steps:

1. Normalizations: We use Zss = 1.0 and Πss = 1.0

2. Targets: We choose δss, λ
u
ss, θss,M̃ss and V v

ss, as calibration targets

3. Solution: The steady state for the remaining variable can then be found in closed

form. See details in Appendix A.4.3.

Second, we solve for the impulse-response to MIT shocks around the steady using the

following 5 step approach:

1. Exogenous: We choose paths for {Zt}T0 and {βt}T0 where for t ∈ [T , T ] with T ≪ T

we have Zt = Zss and βt = βss.

2. Inputs: Guess on 4 inputs paths.

Intermediary goods price, {PX
t }T0

Job value, {V j
t }T0

Vacancy value, {V v
t }T0

Inflation, {Πt}T0

3. Evaluation: Evaluate paths for all remaining variables.
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4. Errors: Check errors of the 4 target equations.

Intermediary goods price, {PX
t }

Job value, {V j
t }

Vacancy value, {V v
t }

Inflation, {Πt}

5. Convergence: Loop through step 2-4 until errors are below chosen tolerance.

To speed up the solution, we compute the Jacobian of the equation system using numerical

differentiation and solve the problem with a Broyden solver. The code is mostly written in

Python, but the evaluation of the equation system is written in C++, and the computation

of the Jacobian is parallelized.

In practice, the system is close to linear for small aggregate shocks, and we could have

computed the transition paths under a linear approximation directly. We opt for computing

the non-linear transition paths as this method was seemingly more stable when considering

parameter changes to the model.

A.3 Appendix to Section 4

A.3.1 Proof of Proposition 1 and Proposition 2

The log-linearized equations for the HANK block are the asset-marking clearing condition,

it − Etπt+1 = −
URISKss ×


Wss

ϑ

σ − 1


1 + URISKss ×


Wss

ϑ

σ − 1
uriskt − log νβ

t ,

the Taylor rule,

it = (φπ − 1)πt + Et[πt+1],

and the Phillips curve,

πt = βEtπt+1 + (p − 1)φ−1pxt .

Solving for it−Et[πt+1] in the Taylor rule and substituting in the expression for it−Et[πt+1]

from the asset-marking clearing condition gives

πt = − 1

φπ − 1


URISKss ×


Wss

ϑ

σ − 1


1 + URISKss ×


Wss

ϑ

σ − 1
uriskt + log νβ

t


.
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Substituting into the Phillips curve gives

pxt =−

URISKss×((Wss
ϑ )

σ−1)
1+URISKss×((Wss

ϑ )
σ−1)

(φπ − 1)(p − 1)φ−1
(uriskt − βEturiskt+1)

− 1

(φπ − 1)(p − 1)φ−1
(log νβ

t − βEt log ν
β
t+1)

which, by invoking that log νβ
t+1 follows an AR(1) with persistence ρβ, gives

pxt + zt = −

URISKss×((Wss
ϑ )

σ−1)
1+URISKss×((Wss

ϑ )
σ−1)

(φπ − 1)(p − 1)φ−1
(uriskt − βEturiskt+1)−

1− βρβ

(φπ − 1)(p − 1)φ−1
log νβ

t + zt,

Therefore, labor revenue product, pxt +zt, responds identically to a TFP shock and a demand

shock, up to the proportionality factor 1−βρβ

(φπ−1)(p−1)φ−1 . This proves Proposition 2.

In the absence of demand shocks, we have

pxt =

URISKss×((Wss
ϑ )

σ−1)
1+URISKss×((Wss

ϑ )
σ−1)

(φπ − 1)(p − 1)φ−1
(uriskt − βEturiskt+1),

proving Proposition 1.

A.3.2 Standard Taylor Rule

Figure A.14 compares the impulse response to a TFP shock in the baseline model to that

with a standard Taylor rule, where Equation 23 is replaced with 1 + it = (1 + iss)Π
φπ
t .

A.4 Appendix to Section 5

A.4.1 Externally calibrated parameters

Panel A of Table A.3 displays the externally calibrated parameters. We set the level of

home production ϑ to be 90 percent of the wage level, such that consumption drops by

10 percent upon unemployment. This is in between the target values of 5 and 20 percent

considered in Ravn and Sterk (2021), and roughly in line with estimates from micro-data

of the consumption drop after unemployment shocks.23 In addition, the model contains a

23Gruber (1997) find a 6.8 percent consumption drop upon unemployment using the PSID, Browning and
Crossley (2001) find a 14 percent consumption in Canadian survey data and Kolsrud et al. (2018) find a
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(a) Unemployment rate, ut (b) Separation rate, δt (c) Job-finding rate, λu
t

Figure A.14: Impulse-response to a 1-std. TFP shock - varying the Taylor Rule .
Notes: This figure shows the impulse-response to a TFP-shock varying the Taylor rule. The baseline Taylor
rule is Equation 23. The standard Taylor rule is 1 + it = (1 + iss)Π

φπ

t . All other parameters are set as in
Table A.3.

number of scale parameters in the matching function and idiosyncratic cost functions. We

choose these to satisfy three steady state targets for the separation rate, the job-finding rate,

and tightness. The targeted values are shown in Panel B of Table A.3.

A.4.2 Identification of fundamental surplus ratio, separation and entry elastic-

ities

Panel I in Figure A.15 shows that the separation elasticity, ψ, mainly scales the magnitude of

the impulse responses with a particularly large effect on the separation rate. Panel II shows

that the entry elasticity hardly affects the separation rates, but a lowered entry elasticity

implies larger and more persistent fluctuations in unemployment, through a more pronounced

and delayed hump in the job-finding rate. In panel III, we see that the fundamental surplus

ratio, m̃, affects all impulse responses proportionally. As discussed in Ljungqvist and Sargent

(2017), for a broad class of SAM models, the steady-state level of the fundamental surplus

ratio is a key determinant of unemployment volatility since a lower fundamental surplus ratio

increases the elasticity of match profits with respect to labor productivity, and therefore also

increases the response of separations and vacancy creation to changes in labor productivity.

A given surplus ratio pins down the steady state wage, Wss. It also determines the value of

the flow vacancy cost, κ, because the fundamental surplus ratio determines the value of a job,

which implies the flow vacancy cost must be adjusted to meet the target value of vacancy

values in steady state, κ0. We also note that Figure A.15 shows that the model generates a

consumption drop between 4.4-9.1 percent in Swedish register data. We target a 10 percent consumption
drop in the middle of these estimates and set ϑ to be 90 percent of the wage level.
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Parameter Value Source

Panel A: Externally calibrated

Discount factor, β 0.961/12 Standard

CRRA coefficient, σ 2 Standard

Home production, ϑ 0.90 ·Wss See text

Substitution elasticity, p 6 Standard

Rotemberg cost, φ 600.0 Standard

Taylor rule parameter, φπ 1.5 Standard

Matching function elasticity, α 0.6 Petrongolo and Pissarides (2001)

Panel B: Steady state targets

Separation rate, δss 0.027 Data
Job-finding rate, λu

ss 0.31 Data
Tightness, θss 0.6 Hagedorn and Manovskii (2008)

Panel C: TFP process

Persistence, ρZ 0.965
Coles and Kelishomi (2018)

Standard deviation, σZ 0.007

Panel D: Internally calibrated parameters

Separation elasticity, ψ 1.000 See Figure 9
Entry elasticity, ξ 0.050 See Figure 9
Fundamental surplus ratio, Mss 0.128 See Figure 9

Table A.3: Calibration.
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fall in vacancies together with a rise in unemployment, i.e., a downward sloping Beveridge

curve.

A.4.3 Remaining parameters

From Table A.3, we have the externally calibrated parameters (β, ρ, ϑ,p, φ, δπ, α), the

steady targets (δss, λ
u
ss, θss), and the internally calibrated parameters (m̃ss, ψ, ξ). Together

with the two auxiliary parameters (κ0 = 0.1 ≈ 0, ∆δ = 0.1 ≈ 0), the remaining model

parameters can be deduced. From the matching function, we directly have

A =
λu
ss

θαss
.

This implies that the steady states of labor markets stocks and flows can be found by,

λv
ss = Aθ−α

ss ,

uss =
δss(1− λu

ss)

λu
ss + δss(1− λu

ss)
,

ũss =
uss

1− λu
ss

,

ṽss = ũssθss,

vss = (1− λv
ss)ṽss,

ιss = ṽss − (1− δss)vss.

We can now also calculate both the value of a job and the value of a vacancy,

V j
ss =

m̃ss

1− β(1− δss)
,

V v
ss = κ0.
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Panel I: Varying the separation elasticity, ψ

(a) Unemployment rate, ut (b) Separation rate, δt (c) Job-finding rate, λu
t

Panel II: Varying the entry elasticity, ξ

(d) Unemployment rate, ut (e) Separation rate, δt (f) Job-finding rate, λu
t

Panel III: Varying the gross fundamental surplus ratio, m̃ss

(g) Unemployment rate, ut (h) Separation rate, δt (i) Job-finding rate, λu
t

Figure A.15: Impulse response to a 1-std. TFP shock - varying parameters.
Notes: This figure shows the impulse response to a TFP shock varying the separation elasticity, ψ, the entry
elasticity, ξ, and the gross fundamental surplus ratio, m̃ss. All other parameters are set as in Table A.3.
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Figure A.16: Decomposition of the unemployment response to a 1-std. β-shock.
Notes: This figure shows a decomposition of the unemployment response to a 1-std. β-shock in the baseline
model. The Unemployment Risk Channel (URC) is the difference between the full response and the response
with complete markets in percent of the full response.

Hereby, we can infer p, F , κ, Υ and Wss by

p = (1 +∆δ)δss

F = ιss(V
v
ss)

−ξ

κ = λv
ssV

j
ss − (1− β(1− λu

ss)(1− δss))V
v
ss

Υ =


δss
p

 1
ψ

V ss
j

µss =

p ψ
ψ−1

Υ


1−


V j
ss

Υ

1−ψ


1− p


V j
ss

Υ

−ψ

Mss = m̃ssP
x
ssZss + βµss

Wss = P x
ssZss −Mss

Hereafter the steady state values of all other variables can be found as well.

A.4.4 The URC to a demand shock

Figure A.16 shows the impulse response of unemployment to a 1-std. β-shock. As seen from

the figure, the contribution of the URC is the same as in response to a TFP shock, and

explains 35 percent of the total unemployment response.
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A.4.5 Additional robustness analysis

Figures A.17-A.19 show how the URC changes with each of the calibrated parameters starting

from both the baseline model and a counterfactual model with a standard DMP labor market

(exogenous separations and free entry). The fundamental surplus ratio, m̃ss, is re-estimated

to fit the observed variance of unemployment, var(ut). The URC in the baseline model is

always substantially larger compared to the model with a standard DMP labor market.

Data Availability Statement

The paper only uses publicly available data, made available to the authors through statis-

tical agencies or other researchers’ personal websites. All data and code used in the paper

are available in a replication package, located at https://github.com/erikoberg/URC_

replication_package.

References

Acharya, S. and Dogra, K. (2020). Understanding HANK: Insights From a PRANK. Econo-

metrica, 88(3):1113–1158.
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